Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Biophys Chem ; 305: 107140, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38118338

RESUMO

Odanacatib (ODN) is a selective cathepsin K inhibitor that acts as an anti-resorptive agent to treat osteoporosis. ODN is also found effective in reducing the effect of severe periodontitis. The interaction between ODN and human serum albumin (HSA) was investigated using spectroscopic, microscopic, and in silico approaches to characterize their binding. The fluorescence intensity of HSA increased upon the addition of increasing concentrations of ODN accompanied by blueshift in the fluorescence spectrum, which suggested hydrophobic formation around the microenvironment of the fluorophores upon ODN binding. A moderate binding affinity was obtained for ODN-HSA binding, with binding constant (Ka) values of ∼104 M-1. Circular dichroism results suggested that the overall secondary and tertiary structures of HSA were both only slightly altered upon ODN binding. The surface morphology of HSA was also affected upon ODN binding, showing aggregate formation. Drug displacement and molecular docking results revealed that ODN preferably binds to site III in subdomain IB of HSA, while molecular dynamics simulations indicated formation of a stable protein complex when site III was occupied by ODN. The ODN-HSA complex was mainly stabilized by a combination of hydrogen bonding, hydrophobic interactions, and van der Waals forces. These findings provide additional information to understand the interaction mechanism of ODN in blood circulation and may help in future improvements on the adverse effects of ODN.


Assuntos
Inibidores de Cisteína Proteinase , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Simulação de Acoplamento Molecular , Sítios de Ligação , Ligação Proteica , Inibidores de Cisteína Proteinase/farmacologia , Espectrometria de Fluorescência , Dicroísmo Circular , Termodinâmica
2.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111366

RESUMO

Curcumin, one of the major ingredients of turmeric (Curcuma longa), has been widely reported for its diverse bioactivities, including against malaria and inflammatory-related diseases. However, curcumin's low bioavailability limits its potential as an antimalarial and anti-inflammatory agent. Therefore, research on the design and synthesis of novel curcumin derivatives is being actively pursued to improve the pharmacokinetic profile and efficacy of curcumin. This review discusses the antimalarial and anti-inflammatory activities and the structure-activity relationship (SAR), as well as the mechanisms of action of curcumin and its derivatives in malarial treatment. This review provides information on the identification of the methoxy phenyl group responsible for the antimalarial activity and the potential sites and functional groups of curcumin for structural modification to improve its antimalarial and anti-inflammatory actions, as well as potential molecular targets of curcumin derivatives in the context of malaria and inflammation.

3.
Adv Protein Chem Struct Biol ; 123: 193-218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33485484

RESUMO

Human serum albumin, the primary transport and reservoir protein in the human circulatory system, interacts with numerous endogenous and exogenous ligands of varying structural characteristics. The mode of binding of drugs to albumin is central to understanding their pharmacokinetic profiles and has a major influence on their in vivo efficacy. Altered drug binding to albumin due to drug-drug interactions or abnormal physiology may result in marked changes in the active drug concentration, thus affecting its pharmacokinetic and pharmacodynamic properties. The propensity of drug-drug interaction to be clinically significant as well as possible exploitation of such interactions for therapeutic purposes is reviewed. Being the major organs of albumin metabolism, any impairment in the liver and kidney functions frequently alter the level of serum albumin, which affects the pharmacokinetic profiles of drugs and may have serious clinical implications. The natural function of serum albumin as a drug carrier is facilitated by its interaction with various cellular receptors. These receptors not only promote the uptake of drugs into cells but are also responsible for the extraordinarily long circulatory half-life of albumin. This property in combination with the presence of multiple ligand binding pockets have led to the emergence of serum albumin as an attractive vehicle for novel drug delivery systems. Here, we provide an overview of various albumin-based drug delivery strategies, classified according to their methods of drug attachment, and highlight their experimental and clinical successes.


Assuntos
Portadores de Fármacos , Albumina Sérica Humana , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Humanos , Ligação Proteica , Albumina Sérica Humana/química , Albumina Sérica Humana/farmacocinética , Albumina Sérica Humana/uso terapêutico
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117337, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31302564

RESUMO

The past decade has seen an increase in the number of research papers on ligand binding to proteins based on fluorescence spectroscopy. In most cases, determination of the binding affinity is made by analyzing the quenching of protein fluorescence induced by the ligand. However, many such articles, even those published in reputed journals, suffer from several mistakes with regard to analysis of fluorescence quenching data. Using the binding of phenylbutazone to human serum albumin as a model, we consider some of these mistakes and show how they affect the values of the association constant. In particular, the failure to correct for the inner filter effect and the use of unsuitable equations are discussed. Ligand binding data presented in these articles should be treated with caution, especially in the absence of data from complementary techniques.


Assuntos
Análise de Dados , Fenilbutazona/metabolismo , Albumina Sérica Humana/metabolismo , Fluorescência , Humanos , Ligantes , Ligação Proteica
5.
Extremophiles ; 22(4): 607-616, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29556723

RESUMO

Dienelactone hydrolase, an α/ß hydrolase enzyme, catalyzes the hydrolysis of dienelactone to maleylacetate, an intermediate for the Krebs cycle. Genome sequencing of the psychrophilic yeast, Glaciozyma antarctica predicted a putative open reading frame (ORF) for dienelactone hydrolase (GaDlh) with 52% sequence similarity to that from Coniophora puteana. Phylogenetic tree analysis showed that GaDlh is closely related to other reported dienelactone hydrolases, and distantly related to other α/ß hydrolases. Structural prediction using MODELLER 9.14 showed that GaDlh has the same α/ß hydrolase fold as other dienelactone hydrolases and esterase/lipase enzymes, with a catalytic triad consisting of Cys-His-Asp and a G-x-C-x-G-G motif. Based on the predicted structure, GaDlh exhibits several characteristics of cold-adapted proteins such as glycine clustering in the binding pocket, reduced protein core hydrophobicity, and the absence of proline residues in loops. The putative ORF was amplified, cloned, and overexpressed in an Escherichia coli expression system. The recombinant protein was overexpressed as soluble proteins and was purified via Ni-NTA affinity chromatography. Biochemical characterization of GaDlh revealed that it has an optimal temperature at 10 °C and that it retained almost 90% of its residual activity when incubated for 90 min at 10 °C. The optimal pH was at pH 8.0 and it was stable between pH 5-9 when incubated for 60 min (more than 50% residual activity). Its Km value was 256 µM and its catalytic efficiency was 81.7 s-1. To our knowledge, this is the first report describing a novel cold-active dienelactone hydrolase-like protein.


Assuntos
Basidiomycota/enzimologia , Temperatura Baixa , Esterases/química , Lactonas/metabolismo , Aclimatação , Basidiomycota/genética , Esterases/genética , Esterases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Domínios Proteicos
6.
Braz. j. pharm. sci ; 52(3): 443-446, July-Sept. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828257

RESUMO

ABSTRACT The interaction between 6-shogaol, a pharmacologically active ginger constituent, and human serum albumin (HSA), the main in vivo drug transporter, was investigated using isothermal titration calorimetry (ITC). The value of the binding constant, Ka (5.02 ± 1.37 × 104 M−1) obtained for the 6-shogaol-HSA system suggested intermediate affinity. Analysis of the ITC data revealed feasibility of the binding reaction due to favorable enthalpy and entropy changes. The values of the thermodynamic parameters suggested involvement of van der Waals forces, hydrogen bonds and hydrophobic interactions in the 6-shogaol-HSA complex formation.


Assuntos
Termodinâmica , Zingiber officinale/anatomia & histologia , Produtos Biológicos/farmacocinética , Calorimetria , Albumina Sérica/análise
7.
Int J Mol Sci ; 16(3): 5180-93, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25756376

RESUMO

Curcumenol and curcumenone are two major constituents of the plants of medicinally important genus of Curcuma, and often govern the pharmacological effect of these plant extracts. These two compounds, isolated from C. zedoaria rhizomes were studied for their binding to human serum albumin (HSA) using the fluorescence quench titration method. Molecular docking was also performed to get a more detailed insight into their interaction with HSA at the binding site. Additions of these sesquiterpenes to HSA produced significant fluorescence quenching and blue shifts in the emission spectra of HSA. Analysis of the fluorescence data pointed toward moderate binding affinity between the ligands and HSA, with curcumenone showing a relatively higher binding constant (2.46 × 105 M-1) in comparison to curcumenol (1.97 × 104 M-1). Cluster analyses revealed that site I is the preferred binding site for both molecules with a minimum binding energy of -6.77 kcal·mol-1. However, binding of these two molecules to site II cannot be ruled out as the binding energies were found to be -5.72 and -5.74 kcal·mol-1 for curcumenol and curcumenone, respectively. The interactions of both ligands with HSA involved hydrophobic interactions as well as hydrogen bonding.


Assuntos
Extratos Vegetais/metabolismo , Albumina Sérica/metabolismo , Sesquiterpenos/metabolismo , Sítios de Ligação , Análise por Conglomerados , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Ligação Proteica , Estrutura Terciária de Proteína , Albumina Sérica/química , Sesquiterpenos/química , Espectrometria de Fluorescência
8.
Biosci Biotechnol Biochem ; 77(1): 87-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23291750

RESUMO

Treatment of Bacillus licheniformis α-amylase (BLA) with guanidine hydrochloride (GdnHCl) produced both denatured and aggregated forms of the enzyme as studied by circular dichroism, fluorescence, UV difference spectroscopy, size exclusion chromatography (SEC), and enzymatic activity. The presence of CaCl(2) in the incubation mixture produced significant recovery in spectral signals, being complete in presence of 10 mM CaCl(2), as well as in enzymatic activity, which is indicative of protein stabilization. However, the SEC results obtained with GdnHCl-denatured BLA both in the absence and the presence of 10 mM CaCl(2) suggested significant aggregation of the protein in the absence of CaCl(2) and disaggregation in its presence. Although partial structural stabilization with significant retention of enzymatic activity was observed in the presence of calcium, it was far from the native state, as reflected by spectral probes. Hence, spectral results as to BLA stabilization should be treated with caution in the presence of aggregation.


Assuntos
Bacillus/química , Proteínas de Bactérias/química , Cloreto de Cálcio/química , Guanidina/química , alfa-Amilases/química , Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Cromatografia em Gel , Dicroísmo Circular , Desnaturação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA