RESUMO
Mosquito traps, historically used for surveillance and research, have gained prominence as a tool for mosquito control, amidst concern over the environmental impact and increased resistance to insecticide-based methods. In this study, we tested the effectiveness of a mass trapping barrier design with two types of traps, Mosquito Magnet (MM) traps and BG-Protector (BGP) traps. This experiment was conducted in three coastal camping areas in southern France between summer and autumn 2022, where the presence of floodwater mosquito species with anthropophilic preferences like Aedes caspius represents a year-long nuisance. MM traps were set around the campsite as a barrier to interfere with mosquitoes from entering the campsites, whereas BGP traps were set within the campsites, with the aim of diverting mosquitoes away from humans at peak activity hours. Over 210,000 mosquitoes of 11 species from 4 genera were collected by both trap types across treatment campsites, with no significant differences in mosquito community samplings between BGP and MM traps. Barrier traps effectively targeted Ae. caspius, reducing total mosquito abundance in two of the three study sites by 34% and 55%. This study provides valuable insights into the efficacy and feasibility of using mass trapping barriers as a complementary control strategy for mosquito species in wetlands.
RESUMO
The mosquito species Aedes (Ochlerotatus) coluzzii Rioux, Guilvard & Pasteur, 1998 was distinguished from its sibling species Aedes detritus (Haliday, 1833) using an isoenzymatic method that required the destruction of the entire specimen, therefore no holotype was designated by the species authors. We aimed to designate a neotype for Ae. coluzzii from specimens collected from the type-locality and individually reared up to adult stage. Genomic DNA was extracted from pupal exuvia and ITS2 was sequenced, enabling verification of the identity of each specimen as Ae. coluzzii or Ae. detritus. Among the series of Ae. coluzzii, a male was designated as neotype and deposited in a collection. To our knowledge, this is the first time the type of a mosquito species is deposited thanks to its molecular identification from its pupal exuvia. The set of identified specimens allowed additional phylogenetic and morphologic studies.
Title: Utilisation d'une exuvie nymphale pour désigner le néotype intact d'une espèce appartenant à un complexe d'espèces jumelles - le cas d'Aedes coluzzii (Diptera, Culicidae). Abstract: L'espèce de moustique Aedes (Ochlerotatus) coluzzii Rioux, Guilvard & Pasteur, 1998 a été distinguée de son espèce jumelle Aedes detritus (Haliday, 1833) par une méthode isoenzymatique qui a nécessité la destruction de l'ensemble du spécimen, et donc aucun holotype n'a été désigné par les auteurs de l'espèce. Notre objectif était de désigner un néotype pour Ae. coluzzii à partir de spécimens collectés dans la localité-type et élevés individuellement jusqu'au stade adulte. L'ADN génomique a été extrait de l'exuvie nymphale et l'ITS2 a été séquencé, permettant la vérification de l'identité de chaque spécimen comme Ae. coluzzii ou Ae. détritus. Parmi la série d'Ae. coluzzii, un mâle a été désigné comme néotype et déposé dans une collection. À notre connaissance, c'est la première fois que le type d'une espèce de moustique est déposé grâce à l'identification moléculaire à partir de son exuvie nymphale. L'ensemble des spécimens identifiés a permis des études phylogénétiques et morphologiques complémentaires.
Assuntos
Aedes , Ochlerotatus , Aedes/anatomia & histologia , Animais , Sequência de Bases , Masculino , Ochlerotatus/genética , Filogenia , PupaRESUMO
In August and September 2015, seven locally acquired cases of dengue virus type 1 (DENV-1) were detected in Nîmes, south of France, where Aedes albopictus has been established since 2011. Epidemiological and entomological investigations allowed to steer vector control measures to contain transmission. An imported case from French Polynesia with onset fever on 4 July was identified as primary case. This outbreak occurred from 8 August to 11 September in a 300 m radius area. Six sprayings to control mosquitos were performed in the affected area. We describe the first considerable dengue outbreak in mainland France where only sporadic cases of autochthonous dengue were recorded previously (2010, 2013 and 2014). The 69 day-period between the primary case and the last autochthonous case suggests multiple episodes of mosquito infections. The absence of notification of autochthonous cases during the month following the primary case's symptoms onset could be explained by the occurrence of inapparent illness. Recurrence of cases every year since 2013, the size of the 2015 outbreak and continuing expansion of areas with presence of Ae. albopictus highlight the threat of arboviral diseases in parts of Europe. Thus, European guidelines should be assessed and adjusted to the current context.
Assuntos
Dengue/epidemiologia , Dengue/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Mosquitos Vetores , Adolescente , Adulto , Idoso , Dengue/transmissão , Feminino , França/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto JovemRESUMO
Five trapping methods were compared for monitoring potential vectors of the West Nile virus in four areas in the Camargue Plain of France: carbon dioxide traps, bird-baited traps, gravid traps, resting boxes, and human landing catches. A total of 73,721 specimens, representing 14 species, was trapped in 2006. Results showed significant differences in species and abundance between the type of traps. Many more specimens were collected using CO(2) traps than any other method, with an average of 212 specimens per night per trap (p<0.05). Culex pipiens was the most abundant species collected (36.8% of total with CO(2) traps), followed by Aedes caspius (22.7%), Anopheles hyrcanus (18.3%), Culex modestus (18.3%), and Aedes detritus (3.2%). Bird-baited traps captured only eight specimens per night per trap on average, mainly Cx. pipiens (89.9%). The species collected and their abundance are influenced by the trap location, at ground or canopy level. Culex pipiens was twice as abundant in the canopy as on the ground, whereas it was the opposite for Ae. caspius, An. hyrcanus, and Ae. detritus. Culex modestus was equally abundant at both levels. Resting boxes and gravid traps were much less efficient, capturing around 0.3 specimens per night per trap. Results are discussed in relation to West Nile virus surveillance.
Assuntos
Culicidae/virologia , Insetos Vetores/virologia , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/patogenicidade , Animais , Culex/virologia , França , Humanos , Equipamentos de ProteçãoRESUMO
BACKGROUND: Although malaria disappeared from southern France more than 60 years ago, suspicions of recent autochthonous transmission in the French Mediterranean coast support the idea that the area could still be subject to malaria transmission. The main potential vector of malaria in the Camargue area, the largest river delta in southern France, is the mosquito Anopheles hyrcanus (Diptera: Culicidae). In the context of recent climatic and landscape changes, the evaluation of the risk of emergence or re-emergence of such a major disease is of great importance in Europe. When assessing the risk of emergence of vector-borne diseases, it is crucial to be able to characterize the arthropod vector's spatial distribution. Given that remote sensing techniques can describe some of the environmental parameters which drive this distribution, satellite imagery or aerial photographs could be used for vector mapping. RESULTS: In this study, we propose a method to map larval and adult populations of An. hyrcanus based on environmental indices derived from high spatial resolution imagery. The analysis of the link between entomological field data on An. hyrcanus larvae and environmental indices (biotopes, distance to the nearest main productive breeding sites of this species i.e., rice fields) led to the definition of a larval index, defined as the probability of observing An. hyrcanus larvae in a given site at least once over a year. Independent accuracy assessments showed a good agreement between observed and predicted values (sensitivity and specificity of the logistic regression model being 0.76 and 0.78, respectively). An adult index was derived from the larval index by averaging the larval index within a buffer around the trap location. This index was highly correlated with observed adult abundance values (Pearson r = 0.97, p < 0.05). This allowed us to generate predictive maps of An. hyrcanus larval and adult populations from the landscape indices. CONCLUSION: This work shows that it is possible to use high resolution satellite imagery to map malaria vector spatial distribution. It also confirms the potential of remote sensing to help target risk areas, and constitutes a first essential step in assessing the risk of re-emergence of malaria in southern France.