Assuntos
Fígado , Neoplasias , Criança , Humanos , Neoplasias/complicações , Fígado/diagnóstico por imagem , Fígado/patologiaAssuntos
Doenças do Sistema Nervoso Central , Sarcoidose , Síndrome de Sjogren , Humanos , Rituximab/efeitos adversos , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/tratamento farmacológico , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sarcoidose/tratamento farmacológicoRESUMO
To tune and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from 4 test sets, including 3 from the United States (patients hospitalized at an academic medical center (N = 154), patients hospitalized at a community hospital (N = 113), and outpatients (N = 108)) and 1 from Brazil (patients at an academic medical center emergency department (N = 303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson R). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. Tuning the deep learning model with outpatient data showed high model performance in 2 United States hospitalized patient datasets (R = 0.88 and R = 0.90, compared to baseline R = 0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (R = 0.86 and R = 0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. A deep learning model that extracts a COVID-19 severity score on CXRs showed generalizable performance across multiple populations from 2 continents, including outpatients and hospitalized patients.
Assuntos
COVID-19 , Aprendizado Profundo , COVID-19/diagnóstico por imagem , Humanos , Pulmão , Radiografia Torácica/métodos , RadiologistasRESUMO
PURPOSE: To develop a deep learning model for detecting brain abnormalities on MR images. MATERIALS AND METHODS: In this retrospective study, a deep learning approach using T2-weighted fluid-attenuated inversion recovery images was developed to classify brain MRI findings as "likely normal" or "likely abnormal." A convolutional neural network model was trained on a large, heterogeneous dataset collected from two different continents and covering a broad panel of pathologic conditions, including neoplasms, hemorrhages, infarcts, and others. Three datasets were used. Dataset A consisted of 2839 patients, dataset B consisted of 6442 patients, and dataset C consisted of 1489 patients and was only used for testing. Datasets A and B were split into training, validation, and test sets. A total of three models were trained: model A (using only dataset A), model B (using only dataset B), and model A + B (using training datasets from A and B). All three models were tested on subsets from dataset A, dataset B, and dataset C separately. The evaluation was performed by using annotations based on the images, as well as labels based on the radiology reports. RESULTS: Model A trained on dataset A from one institution and tested on dataset C from another institution reached an F1 score of 0.72 (95% CI: 0.70, 0.74) and an area under the receiver operating characteristic curve of 0.78 (95% CI: 0.75, 0.80) when compared with findings from the radiology reports. CONCLUSION: The model shows relatively good performance for differentiating between likely normal and likely abnormal brain examination findings by using data from different institutions.Keywords: MR-Imaging, Head/Neck, Computer Applications-General (Informatics), Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms© RSNA, 2021Supplemental material is available for this article.
RESUMO
PURPOSE: To improve and test the generalizability of a deep learning-based model for assessment of COVID-19 lung disease severity on chest radiographs (CXRs) from different patient populations. MATERIALS AND METHODS: A published convolutional Siamese neural network-based model previously trained on hospitalized patients with COVID-19 was tuned using 250 outpatient CXRs. This model produces a quantitative measure of COVID-19 lung disease severity (pulmonary x-ray severity (PXS) score). The model was evaluated on CXRs from four test sets, including 3 from the United States (patients hospitalized at an academic medical center (N=154), patients hospitalized at a community hospital (N=113), and outpatients (N=108)) and 1 from Brazil (patients at an academic medical center emergency department (N=303)). Radiologists from both countries independently assigned reference standard CXR severity scores, which were correlated with the PXS scores as a measure of model performance (Pearson r). The Uniform Manifold Approximation and Projection (UMAP) technique was used to visualize the neural network results. RESULTS: Tuning the deep learning model with outpatient data improved model performance in two United States hospitalized patient datasets (r=0.88 and r=0.90, compared to baseline r=0.86). Model performance was similar, though slightly lower, when tested on the United States outpatient and Brazil emergency department datasets (r=0.86 and r=0.85, respectively). UMAP showed that the model learned disease severity information that generalized across test sets. CONCLUSIONS: Performance of a deep learning-based model that extracts a COVID-19 severity score on CXRs improved using training data from a different patient cohort (outpatient versus hospitalized) and generalized across multiple populations.