Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 352: 124087, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703977

RESUMO

Microplastics (MPs) are growing and ubiquitous environmental pollutants and represent one of the greatest contemporary challenges caused by human activities. Current research has predominantly examined the singular toxicological effects of individual polymers, neglecting the prevailing reality of organisms confronted with complex contaminant mixtures and potential synergistic effects. To fill this research gap, we investigated the lethal and sublethal effects of two common MPs, polystyrene (PS - 4.8-5.8 µm) and poly(methyl methacrylate) (PMMA - 1-40 µm), and their combination (MIX), on the pollinating insect Apis mellifera. For each treatment, we evaluated the oral toxicity of two ecologically relevant and one higher concentration (0.5, 5 and 50 mg/L) and analysed their effects on the immune system and worker survival. As immune activation can alter the cuticular hydrocarbon profile of honey bees, we used gas chromatography-mass spectrometry (GC-MS) to investigate whether MPs lead to changes in the chemical profile of foragers and behavioural assay to test whether such changes affect behavioural patterns of social recognition, undermining overall colony integrity. The results indicate an additive negative effect of PS and PMMA on bee survival and immune response, even at ecologically relevant concentrations. Furthermore, alterations in cuticle profiles were observed with both MPs at the highest and intermediate concentrations, with PMMA being mainly responsible. Both MPs exposure resulted in a reduction in the abundance of several cuticular compounds. Hive entry guards did not show increased inspection or aggressive behaviour towards exposed foragers, allowing them to enter the colony without being treated differently from uncontaminated foragers. These findings raise concerns not only for the health of individual bees, but also for the entire colony, which could be at risk if contaminated nestmates enter the colony undetected, allowing MPs to spread throughout the hive.


Assuntos
Microplásticos , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Microplásticos/toxicidade , Poluentes Ambientais/toxicidade , Poliestirenos/toxicidade , Polimetil Metacrilato/toxicidade , Polímeros
2.
Chemosphere ; 359: 142307, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734252

RESUMO

Agrochemicals play a vital role in protecting crops and enhancing agricultural production by reducing threats from pests, pathogens and weeds. The toxicological status of honey bees can be influenced by a number of factors, including pesticides. While extensive research has focused on the lethal and sublethal effects of insecticides on individual bees and colonies, it is important to recognise that fungicides and herbicides can also affect bees' health. Unfortunately, in the field, honey bees are exposed to mixtures of compounds rather than single substances. This study aimed to evaluate the effects of a commercial fungicide and a commercial herbicide, both individually and in combination, on honey bees. Mortality assays, biomarkers and learning and memory tests were performed, and the results were integrated to assess the toxicological status of honey bees. Neurotoxicity (acetylcholinesterase and carboxylesterase activities), detoxification and metabolic processes (glutathione S-transferase and alkaline phosphatase activities), immune system function (lysozyme activity and haemocytes count) and genotoxicity biomarkers (Nuclear Abnormalities assay) were assessed. The fungicide Sakura® was found to activate detoxification enzymes and affect alkaline phosphatase activity. The herbicide Elegant 2FD and the combination of both pesticides showed neurotoxic effects and induced detoxification processes. Exposure to the herbicide/fungicide mixture impaired learning and memory in honey bees. This study represents a significant advance in understanding the toxicological effects of commonly used commercial pesticides in agriculture and contributes to the development of effective strategies to mitigate their adverse effects on non-target insects.


Assuntos
Biomarcadores , Fungicidas Industriais , Herbicidas , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Biomarcadores/metabolismo , Acetilcolinesterase/metabolismo , Cognição/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Glutationa Transferase/metabolismo
3.
Sci Total Environ ; 912: 169362, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38128669

RESUMO

Scientific research on the impact of microplastics (MPs) in terrestrial systems is still emerging, but it has confirmed adverse health effects in organisms exposed to plastics. Although recent studies have shown the toxicological effects of individual MPs polymers on honey bees, the effects of different polymer combinations on cognitive and behavioural performance remain unknown. To fill this knowledge gap, we investigated the effects of oral exposure to spherical MPs on cognitive performance and brain accumulation in the honey bee Apis mellifera. We evaluated the acute toxicity, after a two-day exposure, of polystyrene (PS - 4.8-5.8 µm) and plexiglass (Poly(methyl methacrylate), or PMMA - 1-40 µm) MPs, and a combination of the two (MIX), at two environmentally relevant and one higher concentration (0.5, 5 and 50 mg L-1) and analysed their effects on sucrose responsiveness and appetitive olfactory learning and memory. We also used fluorescent thermoset amino formaldehyde MPs (1-5 µm) to explore whether microspheres of this diameter could penetrate the insect blood-brain barrier (BBB), using Two-Photon Fluorescence Microscopy (TPFM) in combination with an optimized version of the DISCO clearing technique. The results showed that PS reduced sucrose responsiveness, while PMMA had no significant effect; however, the combination had a marked negative effect on sucrose responsiveness. PMMA, PS, and MIX impaired bee learning and memory in bees, with PS showing the most severe effects. 3D brain imaging analysis using TFPM showed that 1-5 µm MPs penetrated and accumulated in the brain after only three days of oral exposure. These results raise concerns about the potential mechanical, cellular, and biochemical damage that MPs may cause to the central nervous system.


Assuntos
Microplásticos , Plásticos , Abelhas , Animais , Microplásticos/toxicidade , Plásticos/toxicidade , Polimetil Metacrilato , Poliestirenos , Encéfalo , Cognição , Sacarose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA