Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Cell Infect Microbiol ; 11: 673122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996640

RESUMO

Bacterial Type III Secretion Systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or deliver Type III Secretion effectors directly into eukaryotic host cell cytoplasm. Shigella, the causing agent of bacillary dysentery or shigellosis, bears a set of T3SS proteins termed translocators that form a pore in the host cell membrane. IpaB, the major translocator of the system, is a key factor in promoting Shigella pathogenicity. Prior to secretion, IpaB is maintained inside the bacterial cytoplasm in a secretion competent folding state thanks to its cognate chaperone IpgC. IpgC couples T3SS activation to transcription of effector genes through its binding to MxiE, probably after the delivery of IpaB to the secretion export gate. Small Angle X-ray Scattering experiments and modeling reveal that IpgC is found in different oligomeric states in solution, as it forms a stable heterodimer with full-length IpaB in contrast to an aggregation-prone homodimer in the absence of the translocator. These results support a stoichiometry of interaction 1:1 in the IpgC/IpaB complex and the multi-functional nature of IpgC under different T3SS states.


Assuntos
Disenteria Bacilar , Shigella , Antígenos de Bactérias , Proteínas de Bactérias/genética , Humanos , Chaperonas Moleculares/genética , Shigella flexneri , Sistemas de Secreção Tipo III/genética
3.
Cell Microbiol ; 22(5): e13166, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31957253

RESUMO

Strategies employed by pathogenic enteric bacteria, such as Shigella, to subvert the host adaptive immunity are not well defined. Impairment of T lymphocyte chemotaxis by blockage of polarised edge formation has been reported upon Shigella infection. However, the functional impact of Shigella on T lymphocytes remains to be determined. Here, we show that Shigella modulates CD4+ T cell F-actin dynamics and increases cell cortical stiffness. The scanning ability of T lymphocytes when encountering antigen-presenting cells (APC) is subsequently impaired resulting in decreased cell-cell contacts (or conjugates) between the two cell types, as compared with non-infected T cells. In addition, the few conjugates established between the invaded T cells and APCs display no polarised delivery and accumulation of the T cell receptor to the contact zone characterising canonical immunological synapses. This is most likely due to the targeting of intracellular vesicular trafficking by the bacterial type III secretion system (T3SS) effectors IpaJ and VirA. The collective impact of these cellular reshapings by Shigella eventually results in T cell activation dampening. Altogether, these results highlight the combined action of T3SS effectors leading to T cell defects upon Shigella infection.


Assuntos
Citoesqueleto de Actina/metabolismo , Imunidade Adaptativa , Disenteria Bacilar/imunologia , Transporte Proteico/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Shigella/metabolismo , Actinas , Linhagem Celular , Complexo de Golgi , Humanos , Sinapses Imunológicas , Shigella/genética , Linfócitos T/imunologia , Sistemas de Secreção Tipo III/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(27): 13582-13591, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209035

RESUMO

Intracellular trafficking pathways in eukaryotic cells are essential to maintain organelle identity and structure, and to regulate cell communication with its environment. Shigella flexneri invades and subverts the human colonic epithelium by the injection of virulence factors through a type 3 secretion system (T3SS). In this work, we report the multiple effects of two S. flexneri effectors, IpaJ and VirA, which target small GTPases of the Arf and Rab families, consequently inhibiting several intracellular trafficking pathways. IpaJ and VirA induce large-scale impairment of host protein secretion and block the recycling of surface receptors. Moreover, these two effectors decrease clathrin-dependent and -independent endocytosis. Therefore, S. flexneri infection induces a global blockage of host cell intracellular transport, affecting the exchange between cells and their external environment. The combined action of these effectors disorganizes the epithelial cell polarity, disturbs epithelial barrier integrity, promotes multiple invasion events, and enhances the pathogen capacity to penetrate into the colonic tissue in vivo.


Assuntos
Disenteria Bacilar/fisiopatologia , Mucosa Intestinal/microbiologia , Shigella flexneri , Transporte Biológico , Células CACO-2 , Polaridade Celular , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Colo/fisiopatologia , Disenteria Bacilar/metabolismo , Disenteria Bacilar/patologia , Endocitose , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia
5.
PLoS One ; 12(10): e0186920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29073283

RESUMO

Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using ß-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Plasmídeos , Shigella flexneri/patogenicidade , Virulência , Células HeLa , Humanos , Células Jurkat , Espectrometria de Massas , Proteoma , Shigella flexneri/genética , Shigella flexneri/metabolismo , beta-Lactamases/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(37): 9954-9959, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847968

RESUMO

The enteroinvasive bacterium Shigella is a facultative intracellular bacterium known, in vitro, to invade a large diversity of cells through the delivery of virulence effectors into the cell cytoplasm via a type III secretion system (T3SS). Here, we provide evidence that the injection of T3SS effectors does not necessarily result in cell invasion. Indeed, we demonstrate through optimization of a T3SS injection reporter that effector injection without subsequent cell invasion, termed the injection-only mechanism, is the main strategy used by Shigella to target human immune cells. We show that in vitro-activated human peripheral blood B, CD4+ T, and CD8+ T lymphocytes as well as switched memory B cells are mostly targeted by the injection-only mechanism. B and T lymphocytes residing in the human colonic lamina propria, encountered by Shigella upon its crossing of the mucosal barrier, are also mainly targeted by injection-only. These findings reveal that cells refractory to invasion can still be injected, thus extending the panel of host cells manipulated to the benefit of the pathogen. Future analysis of the functional consequences of the injection-only mechanism toward immune cells will contribute to the understanding of the priming of adaptive immunity, which is known to be altered during the course of natural Shigella infection.


Assuntos
Disenteria Bacilar/imunologia , Linfócitos/parasitologia , Shigella/metabolismo , Imunidade Adaptativa , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Movimento Celular/imunologia , Interações Hospedeiro-Patógeno , Humanos , Shigella/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , Virulência , Fatores de Virulência/metabolismo
7.
Neurochem Res ; 37(6): 1325-34, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22388569

RESUMO

The functional link between glycolipid glycosyltransferases (GT) relies on the ability of these proteins to form organized molecular complexes. The organization, stoichiometry and composition of these complexes may impact their sorting properties, sub-Golgi localization, and may determine relative efficiency of GT in different glycolipid biosynthetic pathways. In this work, by using Förster resonance energy transfer microscopy in live CHO-K1 cells, we investigated homo- and hetero-complex formation by different GT as well as their spatial organization and molecular stoichiometry on Golgi membranes. We find that GalNAcT and GalT2 Ntd are able to form hetero-complexes in a 1:2 molar ratio at the trans-Golgi network and that GalT2 but not GalNAcT forms homo-complexes. Also, GalNAcT/GalT2 complexes exhibit a stable behavior reflected by its clustered lateral organization. These results reveals that particular topological organization of GTs may have functional implications in determining the composition of glycolipids in cellular membranes.


Assuntos
Galactosiltransferases/metabolismo , Complexo de Golgi/enzimologia , Complexos Multienzimáticos/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Rede trans-Golgi/enzimologia
8.
J Neurochem ; 117(4): 589-602, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21371037

RESUMO

Brain tissue is characterized by its high glycosphingolipid content, particularly those containing sialic acid (gangliosides). As a result of this observation, brain tissue was a focus for studies leading to the characterization of the enzymes participating in ganglioside biosynthesis, and their participation in driving the compositional changes that occur in glycolipid expression during brain development. Later on, this focus shifted to the study of cellular aspects of the synthesis, which lead to the identification of the site of synthesis in the neuronal soma and their axonal transport toward the periphery. In this review article, we will focus in subcellular aspects of the biosynthesis of glycosphingolipid oligosaccharides, particularly the mechanisms underlying the trafficking of glycosphingolipid glycosyltransferases from the endoplasmic reticulum to the Golgi, those that promote their retention in the Golgi and those that participate in their topological organization as part of the complex membrane bound machinery for the synthesis of glycosphingolipids.


Assuntos
Química Encefálica/genética , Química Encefálica/fisiologia , Glicoesfingolipídeos/genética , Glicoesfingolipídeos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Glicolipídeos/biossíntese , Glicoesfingolipídeos/biossíntese , Glicosilação , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Humanos , Dobramento de Proteína
9.
Biochem J ; 412(1): 19-26, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18269347

RESUMO

GalT2 (UDP-Gal:GA2/GM2/GD2 beta-1,3-galactosyltransferase) is a Golgi-resident type II membrane protein that participates in the synthesis of glycosphingolipids. The molecular determinants for traffic and localization of this and other glycosyltransferases are still poorly characterized. Considering the possibility that interactions with other proteins may influence these processes, in the present study we carried out a yeast two-hybrid screening using elements of the N-terminal domain of GalT2 as bait. In this screening, we identified calsenilin and its close homologue CALP (calsenilin-like protein), both members of the recoverin-NCS (neuronal calcium sensor) family of calcium-binding proteins. In vitro, GalT2 binds to immobilized recombinant CALP, and CALP binds to immobilized peptides with the GalT2 cytoplasmic tail sequence. GalT2 and calsenilin interact physically when co-expressed in CHO (Chinese-hamster ovary)-K1 cells. The expression of CALP or calsenilin affect Golgi localization of GalT2, and of two other glycosyltransferases, SialT2 (CMP-NeuAc:GM3 sialyltransferase) and GalNAcT (UDP-GalNAc:lactosylceramide/GM3/GD3 beta1-4 N-acetylgalactosaminyltransferase), by redistributing them from the Golgi to the ER (endoplasmic reticulum), whereas the localization of the VSV-G (G-protein of the vesicular stomatitis virus) or the Golgin GM130 was essentially unaffected. Conversely, the expression of GalT2 affects the localization of calsenilin and CALP by shifting a fraction of the molecules from being mostly diffuse in the cytosol, to clustered structures in the perinuclear region. These combined in vivo and in vitro results suggest that CALP and calsenilin are involved in the trafficking of Golgi glycosyltransferases.


Assuntos
Galactosiltransferases/metabolismo , Proteínas Interatuantes com Canais de Kv/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Galactosiltransferases/química , Complexo de Golgi/metabolismo , Humanos , Proteínas Interatuantes com Canais de Kv/fisiologia , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA