Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 571: 111937, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086859

RESUMO

How the growth hormone (GH)/insulin-like growth factor (IGF) system affects osmoregulation in basal vertebrates remains unknown. We examined changes in the expression of components of the GH/IGF axis and gill ion transporters during metamorphosis and following seawater (SW) exposure of sea lamprey. During metamorphosis, increases in gill nka and nkcc1 and salinity tolerance were accompanied by increases in pituitary gh, liver igf1, gill ghr and igf1, but not liver ghr. SW exposure of fully metamorphosed sea lamprey resulted in slight increases in plasma chloride concentrations after SW exposure, indicating a high level of SW tolerance, but no major changes in mRNA levels of gill ion transporters or components of the GH/IGF axis. Our results indicate that metamorphosis is a critical point in the lifecycle of sea lamprey for stimulation of the GH/IGF axis and is temporally associated with and likely promotes metamorphosis and SW tolerance.


Assuntos
Hormônio do Crescimento Humano , Petromyzon , Animais , Hormônio do Crescimento/metabolismo , Petromyzon/metabolismo , Hormônio do Crescimento Humano/metabolismo , Aclimatação/fisiologia , Água do Mar , Brânquias/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(40): e2212196119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161944

RESUMO

We used a representative of one of the oldest extant vertebrate lineages (jawless fish or agnathans) to investigate the early evolution and function of the growth hormone (GH)/prolactin (PRL) family. We identified a second member of the GH/PRL family in an agnathan, the sea lamprey (Petromyzon marinus). Structural, phylogenetic, and synteny analyses supported the identification of this hormone as prolactin-like (PRL-L), which has led to added insight into the evolution of the GH/PRL family. At least two ancestral genes were present in early vertebrates, which gave rise to distinct GH and PRL-L genes in lamprey. A series of gene duplications, gene losses, and chromosomal rearrangements account for the diversity of GH/PRL-family members in jawed vertebrates. Lamprey PRL-L is produced in the proximal pars distalis of the pituitary and is preferentially bound by the lamprey PRL receptor, whereas lamprey GH is preferentially bound by the lamprey GH receptor. Pituitary PRL-L messenger RNA (mRNA) levels were low in larvae, then increased significantly in mid-metamorphic transformers (stage 3); thereafter, levels subsided in final-stage transformers and metamorphosed juveniles. The abundance of PRL-L mRNA and immunoreactive protein increased in the pituitary of juveniles under hypoosmotic conditions, and treatment with PRL-L blocked seawater-associated inhibition of freshwater ion transporters. These findings clarify the origin and divergence of GH/PRL family genes in early vertebrates and reveal a function of PRL-L in osmoregulation of sea lamprey, comparable to a role of PRLs that is conserved in jawed vertebrates.


Assuntos
Hormônio do Crescimento Humano , Petromyzon , Animais , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Osmorregulação/genética , Petromyzon/genética , Petromyzon/metabolismo , Filogenia , Prolactina/genética , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Vertebrados/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-32777470

RESUMO

Cerium oxide nanoparticles (CeO2-NP) have already been detected in the aquatic compartment, however, the evaluation of potential ecotoxicological effects on biota are scarce. The present study aimed to assess the toxic effects of CeO2-NP in Oncorhynchus mykiss in different organs/tissues (gills, liver and kidney) after acute exposure (96 h) to three concentrations: 0.25, 2.5 and 25 mg/L. Oxidative stress response (catalase - CAT; glutathione S-transferases - GSTs), lipid peroxidation (thiobarbituric acid reactive substances - TBARS), Na+/K+-ATPase activity, genotoxicity (genetic damage index - GDI) and histopathology (organ's pathological indices) were evaluated. CAT activity was increased in gills and decreased in liver of fish exposed to the highest CeO2-NPs concentration tested. However, GSTs and Na+/K+-ATPase activities and TBARS levels were not significantly altered in analysed organs. CeO2-NP caused marked changes in the gills (aneurysms, blood capillary congestion, lamellar hypertrophy and hyperplasia, secondary lamella fusion and epithelial lifting), in liver (pyknotic nucleus, hyperemia, enlargement of sinusoids and leucocyte infiltration) and kidney (shrinkage of the glomeruli, enlargement of the Bowman space, tubular degeneration and nuclear hypertrophy). Moreover, a semi-quantitative histopathological scoring system (pathological index) confirmed significant alterations in the three organs of all exposed fish. Furthermore, a significant increase of GDI indices observed in gills and liver, for all tested concentrations, indicated a dose-dependent effect. The present study suggests that the release of CeO2-NP into the aquatic environment promotes biochemical, genotoxic and histopathological damages in fish. However, the mechanisms underlying the occurrence of such effects require further investigation.


Assuntos
Cério/toxicidade , Brânquias/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Oncorhynchus mykiss/metabolismo , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Ecotoxicologia , Brânquias/crescimento & desenvolvimento , Brânquias/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Rim/metabolismo , Rim/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Nanopartículas/administração & dosagem , Oncorhynchus mykiss/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
4.
Sci Rep ; 10(1): 1674, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015405

RESUMO

Growth hormone receptor (GHR) and prolactin receptor (PRLR) in jawed vertebrates were thought to arise after the divergence of gnathostomes from a basal vertebrate. In this study we have identified two genes encoding putative GHR and PRLR in sea lamprey (Petromyzon marinus) and Arctic lamprey (Lethenteron camtschaticum), extant members of one of the oldest vertebrate groups, agnathans. Phylogenetic analysis revealed that lamprey GHR and PRLR cluster at the base of gnathostome GHR and PRLR clades, respectively. This indicates that distinct GHR and PRLR arose prior to the emergence of the lamprey branch of agnathans. In the sea lamprey, GHR and PRLR displayed a differential but overlapping pattern of expression; GHR had high expression in liver and heart tissues, whereas PRLR was expressed highly in the brain and moderately in osmoregulatory tissues. Branchial PRLR mRNA levels were significantly elevated by stage 5 of metamorphosis and remained elevated through stage 7, whereas levels of GHR mRNA were only elevated in the final stage (7). Branchial expression of GHR increased following seawater (SW) exposure of juveniles, but expression of PRLR was not significantly altered. The results indicate that GHR and PRLR may both participate in metamorphosis and that GHR may mediate SW acclimation.


Assuntos
Hormônio do Crescimento/metabolismo , Petromyzon/metabolismo , Prolactina/metabolismo , Animais , Metamorfose Biológica/fisiologia , Filogenia , RNA Mensageiro/metabolismo , Receptores da Prolactina/metabolismo , Receptores da Somatotropina/metabolismo , Água do Mar , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA