Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Mater ; 36(9): 4426-4436, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764750

RESUMO

Bare lanthanide-doped nanoparticles (LnNPs), in particular, NaYF4:Yb3+,Tm3+ NPs (UCTm), have been seeded in situ with gold cations to be used in the subsequent growth of gold nanoclusters (AuNCs) in the presence of glutathione (GSH) to obtain a novel UCTm@AuNC nanoheterostructure (NHS) with a raspberry-like morphology. UCTm@AuNC displays unique optical properties (multiple absorption and emission wavelengths). Specifically, upon 350 nm excitation, it exhibits AuNC photoluminescence (PL) (500-1200 nm, λmax 650 nm) and Yb emission (λmax 980 nm); this is the first example of Yb sensitization in a UCTm@AuNC NHS. Moreover, under 980 nm excitation, it displays (i) upconverting PL of the UCTm (at the blue, red and NIR-I, ca. 800 nm, regions); (ii) two-photon PL of AuNC; and (iii) down-shifting PL of thulium (around 1470 nm). The occurrence of energy transfer from UCTm to AuNCs in the UCTm@AuNC NHS was evidenced by the drastic lengthening of the AuNC PL lifetime (τPL) (from few hundred nanoseconds to more than one hundred microseconds). Initial biological assessment of UCTm@AuNC NHSs in vitro revealed high biocompatibility and bioimaging capabilities upon near-infrared excitation.

2.
Nanoscale ; 15(48): 19792-19800, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38050867

RESUMO

A nanohybrid made of a xanthenic dye, rose bengal, grafted to an ytterbium and erbium codoped upconversion nanoparticle (UCNP) served as a proof-of-concept to evaluate the fundamental mechanisms which govern the dye photophysics upon interaction with the UCNP. Both photoactive lanthanides strongly influence the singlet and triplet excited states of rose bengal.

3.
Anal Bioanal Chem ; 414(15): 4291-4310, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35312819

RESUMO

Near-infrared optical imaging offers some advantages over conventional imaging, such as deeper tissue penetration, low or no autofluorescence, and reduced tissue scattering. Lanthanide-doped nanoparticles (LnNPs) have become a trend in the field of photoactive nanomaterials for optical imaging due to their unique optical features and because they can use NIR light as excitation and/or emission light. This review is focused on NaREF4 NPs and offers an overview of the state-of-the-art investigation in their use as luminophores in optical microscopy, time-resolved imaging, and super-resolution nanoscopy based on, or applied to, LnNPs. Secondly, whenever LnNPs are combined with other nanomaterial or nanoparticle to afford nanohybrids, the characterization of their physical and chemical properties is of current interest. In this context, the latest trends in optical microscopy and their future perspectives are discussed.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Nanoestruturas , Elementos da Série dos Lantanídeos/química , Microscopia , Nanopartículas/química , Imagem Óptica
4.
Biomedicines ; 9(10)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680536

RESUMO

Nanoparticles for medical use should be non-cytotoxic and free of bacterial contamination. Upconversion nanoparticles (UCNPs) coated with cucurbit[7]uril (CB[7]) made by combining UCNPs free of oleic acid, here termed bare UCNPs (UCn), and CB[7], i.e., UC@CB[7] nanohybrids, could be used as photoactive inorganic-organic hybrid scaffolds for biological applications. UCNPs, in general, are not considered to be highly toxic materials, but the release of fluorides and lanthanides upon their dissolution may cause cytotoxicity. To identify potential adverse effects of the nanoparticles, dehydrogenase activity of endothelial cells, exposed to various concentrations of the UCNPs, was determined. Data were verified by measuring lactate dehydrogenase release as the indicator of loss of plasma membrane integrity, which indicates necrotic cell death. This assay, in combination with calcein AM/Ethidium homodimer-1 staining, identified induction of apoptosis as main mode of cell death for both particles. The data showed that the UCNPs are not cytotoxic to endothelial cells, and the samples did not contain endotoxin contamination. Higher cytotoxicity, however, was seen in HeLa and RAW 264.7 cells. This may be explained by differences in lysosome content and particle uptake rate. Internalization of UCn and UC@CB[7] nanohybrids by cells was demonstrated by NIR laser scanning microscopy.

5.
Nanoscale ; 13(33): 14254, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477708

RESUMO

Correction for 'NIR laser scanning microscopy for photophysical characterization of upconversion nanoparticles and nanohybrids' by Juan Ferrera-González et al., Nanoscale, 2021, 13, 10067-10080, DOI: .

6.
Nanoscale ; 13(22): 10067-10080, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34042932

RESUMO

Photophysical characterization of upconversion nanoparticles (UCNPs) and nanohybrids (UCNHs) is more challenging than that of down-conversion nanomaterials. Moreover, it is still difficult to gain knowledge about the homogeneity of the sample and colocalization of emissive chromophores and nanoparticles in nanohybrids. Near infrared laser scanning microscopy (NIR-LSM) is a well-known and useful imaging technique, which enables excitation in the NIR region and has been extensively applied to optical fluorescence imaging of organic fluorophores and nanomaterials, such as quantum dots, which exhibit a short-lived emission. NIR-LSM has recently been used to determine the empirical emission lifetime of UCNPs, thus extending its application range to nanomaterials with a long lifetime emission. Here, we review our previous findings and include new measurements and samples to fully address the potential of this technique. NIR-LSM has proved to be extraordinarily useful not only for photophysical characterization of UCNHs consisting of UCNPs capped with a fluorophore to easily visualize the occurrence of the resonance energy transfer process between the UCNH constituents and their homogeneity, but also to assess the colocalization of the fluorophore and the UCNP in the UCNH; all this information can be acquired on the micro-/nano-meter scale by just taking one image.

7.
Nanoscale ; 10(26): 12297-12301, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29926857

RESUMO

Up to now, most strategies to build efficient 800 nm-light responsive upconversion nanoparticles (UCNPs) have included onion-layered structures, in which Nd3+ is confined within the inorganic crystal structure of at least one layer. We report here an easy room-temperature modular preparation of core-shell UCNPs consisting of NaYF4:Yb,Er(Tm)/NaYF4 (UCCS) with Nd3+ anchored at the organic capping by using cucurbituril[7] (CB[7]) as an adhesive. Strikingly, excitation at 800 nm effectively triggers the upconversion emission of UCCS@CB[7]@Nd nanohybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA