Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 185(16): 2918-2935.e29, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35803260

RESUMO

Neoadjuvant immune checkpoint blockade has shown promising clinical activity. Here, we characterized early kinetics in tumor-infiltrating and circulating immune cells in oral cancer patients treated with neoadjuvant anti-PD-1 or anti-PD-1/CTLA-4 in a clinical trial (NCT02919683). Tumor-infiltrating CD8 T cells that clonally expanded during immunotherapy expressed elevated tissue-resident memory and cytotoxicity programs, which were already active prior to therapy, supporting the capacity for rapid response. Systematic target discovery revealed that treatment-expanded tumor T cell clones in responding patients recognized several self-antigens, including the cancer-specific antigen MAGEA1. Treatment also induced a systemic immune response characterized by expansion of activated T cells enriched for tumor-infiltrating T cell clonotypes, including both pre-existing and emergent clonotypes undetectable prior to therapy. The frequency of activated blood CD8 T cells, notably pre-treatment PD-1-positive KLRG1-negative T cells, was strongly associated with intra-tumoral pathological response. These results demonstrate how neoadjuvant checkpoint blockade induces local and systemic tumor immunity.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Linfócitos do Interstício Tumoral , Terapia Neoadjuvante , Neoplasias/terapia , Microambiente Tumoral
2.
Immunity ; 53(5): 1095-1107.e3, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33128877

RESUMO

Developing effective strategies to prevent or treat coronavirus disease 2019 (COVID-19) requires understanding the natural immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We used an unbiased, genome-wide screening technology to determine the precise peptide sequences in SARS-CoV-2 that are recognized by the memory CD8+ T cells of COVID-19 patients. In total, we identified 3-8 epitopes for each of the 6 most prevalent human leukocyte antigen (HLA) types. These epitopes were broadly shared across patients and located in regions of the virus that are not subject to mutational variation. Notably, only 3 of the 29 shared epitopes were located in the spike protein, whereas most epitopes were located in ORF1ab or the nucleocapsid protein. We also found that CD8+ T cells generally do not cross-react with epitopes in the four seasonal coronaviruses that cause the common cold. Overall, these findings can inform development of next-generation vaccines that better recapitulate natural CD8+ T cell immunity to SARS-CoV-2.


Assuntos
Betacoronavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Betacoronavirus/isolamento & purificação , COVID-19 , Convalescença , Coronavirus/imunologia , Infecções por Coronavirus/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus , Mapeamento de Epitopos , Epitopos de Linfócito T , Feminino , Humanos , Epitopos Imunodominantes , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Proteínas do Nucleocapsídeo/imunologia , Pandemias , Fosfoproteínas , Pneumonia Viral/diagnóstico , Poliproteínas , SARS-CoV-2 , Proteínas Virais/imunologia , Adulto Jovem
3.
Mol Ther Nucleic Acids ; 19: 1000-1014, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32044723

RESUMO

To address the problem of poor asthma control due to drug resistance, an antisense oligonucleotide complementary to mmu-miR-145a-5p (antimiR-145) was tested in a house dust mite mouse model of mild/moderate asthma. miR-145 was targeted to reduce inflammation, regulate epithelial-mesenchymal transitions, and promote differentiation of structural cells. In addition, several chemical variations of a nontargeting oligonucleotide were tested to define sequence-dependent effects of the miRNA antagonist. After intravenous administration, oligonucleotides complexed with a pegylated cationic lipid nanoparticle distributed to most cells in the lung parenchyma but were not present in smooth muscle or the mucosal epithelium of the upper airways. Treatment with antimiR-145 and a nontargeting oligonucleotide both reduced eosinophilia, reduced obstructive airway remodeling, reduced mucosal metaplasia, and reduced CD68 immunoreactivity. Poly(A) RNA-seq verified that antimiR-145 increased levels of many miR-145 target transcripts. Genes upregulated in human asthma and the mouse model of asthma were downregulated by oligonucleotide treatments. However, both oligonucleotides significantly upregulated many genes of interferon signaling pathways. These results establish effective lung delivery and efficacy of locked nucleic acid/DNA oligonucleotides administered intravenously, and suggest that some of the beneficial effects of oligonucleotide therapy of lung inflammation may be due to normalization of interferon response pathways.

4.
Front Immunol ; 9: 2113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333818

RESUMO

Calcium calmodulin kinase IV (CaMK4) regulates multiple processes that significantly contribute to the lupus-related pathology by controlling the production of IL-2 and IL-17 by T cells, the proliferation of mesangial cells, and the function and structure of podocytes. CaMK4 is also upregulated in podocytes from patients with focal segmental glomerulosclerosis (FSGS). In both immune and non-immune podocytopathies, CaMK4 disrupts the structure and function of podocytes. In lupus-prone mice, targeted delivery of a CaMK4 inhibitor to CD4+ T cells suppresses both autoimmunity and the development of nephritis. Targeted delivery though to podocytes averts the deposition of immune complexes without affecting autoimmunity in lupus-prone mice and averts pathology induced by adriamycin in normal mice. Therefore, targeted delivery of a CaMK4 inhibitor to podocytes holds high therapeutic promise for both immune (lupus nephritis) and non-immune (FSGS) podocytopathies.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Glomerulosclerose Segmentar e Focal/enzimologia , Nefrite Lúpica/enzimologia , Células Mesangiais/metabolismo , Podócitos/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Animais , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/imunologia , Humanos , Interleucina-2/metabolismo , Nefrite Lúpica/tratamento farmacológico , Nefrite Lúpica/imunologia , Camundongos , Terapia de Alvo Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA