Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 11(5)2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126088

RESUMO

Domoic acid (DA)-producing harmful algal blooms (HABs) have been present at unprecedented geographic extent and duration in recent years causing an increase in contamination of seafood by this common environmental neurotoxin. The toxin is responsible for the neurotoxic illness, amnesic shellfish poisoning (ASP), that is characterized by gastro-intestinal distress, seizures, memory loss, and death. Established seafood safety regulatory limits of 20 µg DA/g shellfish have been relatively successful at protecting human seafood consumers from short-term high-level exposures and episodes of acute ASP. Significant concerns, however, remain regarding the potential impact of repetitive low-level or chronic DA exposure for which there are no protections. Here, we report the novel discovery of a DA-specific antibody in the serum of chronically-exposed tribal shellfish harvesters from a region where DA is commonly detected at low levels in razor clams year-round. The toxin was also detected in tribal shellfish consumers' urine samples confirming systemic DA exposure via consumption of legally-harvested razor clams. The presence of a DA-specific antibody in the serum of human shellfish consumers confirms long-term chronic DA exposure and may be useful as a diagnostic biomarker in a clinical setting. Adverse effects of chronic low-level DA exposure have been previously documented in laboratory animal studies and tribal razor clam consumers, underscoring the potential clinical impact of such a diagnostic biomarker for protecting human health. The discovery of this type of antibody response to chronic DA exposure has broader implications for other environmental neurotoxins of concern.


Assuntos
Anticorpos/sangue , Técnicas Biossensoriais , Ácido Caínico/análogos & derivados , Toxinas Marinhas/imunologia , Neurotoxinas/imunologia , Monitoramento Biológico , Biomarcadores/sangue , Exposição Dietética/análise , Humanos , Indígenas Norte-Americanos , Ácido Caínico/imunologia , Ácido Caínico/urina , Toxinas Marinhas/urina , Neurotoxinas/urina , Frutos do Mar , Ressonância de Plasmônio de Superfície , Washington
2.
Environ Sci Technol ; 53(3): 1422-1431, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672293

RESUMO

Information on ocean scale drivers of methylmercury levels and variability in tuna is scarce, yet crucial in the context of anthropogenic mercury (Hg) inputs and potential threats to human health. Here we assess Hg concentrations in three commercial tuna species (bigeye, yellowfin, and albacore, n = 1000) from the Western and Central Pacific Ocean (WCPO). Models were developed to map regional Hg variance and understand the main drivers. Mercury concentrations are enriched in southern latitudes (10°S-20°S) relative to the equator (0°-10°S) for each species, with bigeye exhibiting the strongest spatial gradients. Fish size is the primary factor explaining Hg variance but physical oceanography also contributes, with higher Hg concentrations in regions exhibiting deeper thermoclines. Tuna trophic position and oceanic primary productivity were of weaker importance. Predictive models perform well in the Central Equatorial Pacific and Hawaii, but underestimate Hg concentrations in the Eastern Pacific. A literature review from the global ocean indicates that size tends to govern tuna Hg concentrations, however regional information on vertical habitats, methylmercury production, and/or Hg inputs are needed to understand Hg distribution at a broader scale. Finally, this study establishes a geographical context of Hg levels to weigh the risks and benefits of tuna consumption in the WCPO.


Assuntos
Mercúrio , Atum , Animais , Havaí , Humanos , Oceanos e Mares , Oceano Pacífico
3.
Harmful Algae ; 64: 20-29, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28427569

RESUMO

The consumption of one meal of seafood containing domoic acid (DA) at levels high enough to induce seizures can cause gross histopathological lesions in hippocampal regions of the brain and permanent memory loss in humans and marine mammals. Seafood regulatory limits have been set at 20mgDA/kg shellfish to protect human consumers from symptomatic acute exposure, but the effects of repetitive low-level asymptomatic exposure remain a critical knowledge gap. Recreational and Tribal-subsistence shellfish harvesters are known to regularly consume low levels of DA. The aim of this study was to determine if chronic low-level DA exposure, at doses below those that cause overt signs of neurotoxicity, has quantifiable impacts on cognitive function. To this end, female C57BL/6NJ mice were exposed to asymptomatic doses of DA (≈0.75mg/kg) or vehicle once a week for several months. Spatial learning and memory were tested in a radial water maze paradigm at one, six and 25 weeks of exposure, after a nine-week recovery period following cessation of exposure, and at three old age time points (18, 24 and 28 months old). Mice from select time points were also tested for activity levels in a novel cage environment using a photobeam activity system. Chronic low-level DA exposure caused significant spatial learning impairment and hyperactivity after 25 weeks of exposure in the absence of visible histopathological lesions in hippocampal regions of the brain. These cognitive effects were reversible after a nine-week recovery period with no toxin exposure and recovery was sustained into old age. These findings identify a new potential health risk of chronic low-level exposure in a mammalian model. Unlike the permanent cognitive impacts of acute exposure, the chronic low-level effects observed in this study were reversible suggesting that these deficits could potentially be managed through cessation of exposure if they also occur in human seafood consumers.


Assuntos
Disfunção Cognitiva/induzido quimicamente , Ácido Caínico/análogos & derivados , Aprendizagem/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Alimentos Marinhos/análise , Memória Espacial/efeitos dos fármacos , Animais , Feminino , Hipocampo/anatomia & histologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Testes de Toxicidade Crônica
4.
Environ Int ; 101: 70-79, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28109640

RESUMO

Domoic acid (DA) is a neurotoxin that is naturally produced by phytoplankton and accumulates in seafood during harmful algal blooms. As the prevalence of DA increases in the marine environment, there is a critical need to identify seafood consumers at risk of DA poisoning. DA exposure was estimated in recreational razor clam (Siliqua patula) harvesters to determine if exposures above current regulatory guidelines occur and/or if harvesters are chronically exposed to low levels of DA. Human consumption rates of razor clams were determined by distributing 1523 surveys to recreational razor clam harvesters in spring 2015 and winter 2016, in Washington, USA. These consumption rate data were combined with DA measurements in razor clams, collected by a state monitoring program, to estimate human DA exposure. Approximately 7% of total acute exposures calculated (including the same individuals at different times) exceeded the current regulatory reference dose (0.075mgDA·kgbodyweight-1·d-1) due to higher than previously reported consumption rates, lower bodyweights, and/or by consumption of clams at the upper range of legal DA levels (maximum 20mg·kg-1 wet weight for whole tissue). Three percent of survey respondents were potentially at risk of chronic DA exposure by consuming a minimum of 15 clams per month for at 12 consecutive months. These insights into DA consumption will provide an additional tool for razor clam fishery management.


Assuntos
Bivalves/química , Contaminação de Alimentos/análise , Ácido Caínico/análogos & derivados , Toxinas Marinhas/análise , Neurotoxinas/análise , Adolescente , Adulto , Animais , Criança , Exposição Dietética , Feminino , Humanos , Ácido Caínico/análise , Ácido Caínico/intoxicação , Masculino , Toxinas Marinhas/intoxicação , Pessoa de Meia-Idade , Neurotoxinas/intoxicação , Nível de Efeito Adverso não Observado , Recreação , Inquéritos e Questionários , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA