Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 12(4): 1152-1169, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903620

RESUMO

NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many transform hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered region from NUP98 that is prone to liquid-liquid phase separation (LLPS) in vitro. A predominant class of NUP98 FOs, including NUP98-HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others harbor other types of DNA- or chromatin-binding domains. NUP98 FOs have long been known to form puncta, but long-standing questions are how nuclear puncta form and how they drive leukemogenesis. Here we studied NHA9 condensates and show that homotypic interactions and different types of heterotypic interactions are required to form nuclear puncta, which are associated with aberrant transcriptional activity and transformation of hematopoietic stem and progenitor cells. We also show that three additional leukemia-associated NUP98 FOs (NUP98-PRRX1, NUP98-KDM5A, and NUP98-LNP1) form nuclear puncta and transform hematopoietic cells. These findings indicate that LLPS is critical for leukemogenesis by NUP98 FOs. SIGNIFICANCE: We show that homotypic and heterotypic mechanisms of LLPS control NUP98-HOXA9 puncta formation, modulating transcriptional activity and transforming hematopoietic cells. Importantly, these mechanisms are generalizable to other NUP98 FOs that share similar domain structures. These findings address long-standing questions on how nuclear puncta form and their link to leukemogenesis. This article is highlighted in the In This Issue feature, p. 873.


Assuntos
Leucemia , Complexo de Proteínas Formadoras de Poros Nucleares , Carcinogênese , Núcleo Celular , Criança , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína 2 de Ligação ao Retinoblastoma
2.
Nature ; 581(7807): 209-214, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32405004

RESUMO

Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.


Assuntos
Espaço Intracelular/química , Espaço Intracelular/metabolismo , Organelas/química , Organelas/metabolismo , Termodinâmica , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Corpos Enovelados/química , Corpos Enovelados/metabolismo , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/deficiência , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Transição de Fase , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , RNA Helicases/deficiência , Proteínas com Motivo de Reconhecimento de RNA/deficiência , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA , Ribossomos/química , Ribossomos/metabolismo
3.
Nat Commun ; 9(1): 5064, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30498217

RESUMO

The nucleolus, the site for ribosome biogenesis contains hundreds of proteins and several types of RNA. The functions of many non-ribosomal nucleolar proteins are poorly understood, including Surfeit locus protein 6 (SURF6), an essential disordered protein with roles in ribosome biogenesis and cell proliferation. SURF6 co-localizes with Nucleophosmin (NPM1), a highly abundant protein that mediates the liquid-like features of the granular component region of the nucleolus through phase separation. Here, we show that electrostatically-driven interactions between disordered regions of NPM1 and SURF6 drive liquid-liquid phase separation. We demonstrate that co-existing heterotypic (NPM1-SURF6) and homotypic (NPM1-NPM1) scaffolding interactions within NPM1-SURF6 liquid-phase droplets dynamically and seamlessly interconvert in response to variations in molecular crowding and protein concentrations. We propose a mechanism wherein NPM1-dependent nucleolar scaffolds are modulated by non-ribosomal proteins through active rearrangements of interaction networks that can possibly contribute to the directionality of ribosomal biogenesis within the liquid-like nucleolus.


Assuntos
Proteínas Nucleares/metabolismo , Ribossomos/metabolismo , Nucléolo Celular/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Nucleofosmina , Biogênese de Organelas , Ligação Proteica , RNA Ribossômico/metabolismo
4.
J Mol Biol ; 430(23): 4773-4805, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30017918

RESUMO

Membrane-less organelles are cellular structures which arise through the phenomenon of phase separation. This process enables compartmentalization of specific sets of macromolecules (e.g., proteins, nucleic acids), thereby regulating cellular processes by increasing local concentration, and modulating the structure and dynamics of their constituents. Understanding the connection between structure, material properties and function of membrane-less organelles requires inter-disciplinary approaches, which address length and timescales that span several orders of magnitude (e.g., Ångstroms to micrometer, picoseconds to hours). In this review, we discuss the wide variety of methods that have been applied to characterize the morphology, rheology, structure and dynamics of membrane-less organelles and their components, in vitro and in live cells.


Assuntos
Organelas/metabolismo , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Animais , Fenômenos Biofísicos , Perfilação da Expressão Gênica , Humanos , Transição de Fase , Proteômica
5.
Biochemistry ; 52(49): 8843-54, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24236614

RESUMO

Susceptibility to aggregation is general to proteins because of the potential for intermolecular interactions between hydrophobic stretches in their amino acid sequences. Protein aggregation has been implicated in several catastrophic diseases, yet we still lack in-depth understanding about how proteins are channeled to this state. Using a predominantly ß-sheet protein whose folding has been explored in detail, cellular retinoic acid-binding protein 1 (CRABP1), as a model, we have tackled the challenge of understanding the links between a protein's natural tendency to fold, 'breathe', and function with its propensity to misfold and aggregate. We identified near-native dynamic species that lead to aggregation and found that inherent structural fluctuations in the native protein, resulting in opening of the ligand-entry portal, expose hydrophobic residues on the most vulnerable aggregation-prone sequences in CRABP1. CRABP1 and related intracellullar lipid-binding proteins have not been reported to aggregate inside cells, and we speculate that the cellular concentration of their open, aggregation-prone conformations is sufficient for ligand binding but below the critical concentration for aggregation. Our finding provides an example of how nature fine-tunes a delicate balance between protein function, conformational variability, and aggregation vulnerability and implies that with the evolutionary requirement for proteins to fold and function, aggregation becomes an unavoidable but controllable risk.


Assuntos
Receptores do Ácido Retinoico/química , Substituição de Aminoácidos , Animais , Medição da Troca de Deutério , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Receptores do Ácido Retinoico/genética
6.
Structure ; 21(3): 476-85, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23454187

RESUMO

Protein folding and aggregation inevitably compete with one another. This competition is even keener for proteins with frustrated landscapes, such as those rich in ß structure. It is interesting that, despite their rugged energy landscapes and high ß sheet content, intracellular lipid-binding proteins (iLBPs) appear to successfully avoid aggregation, as they are not implicated in aggregation diseases. In this study, we used a canonical iLBP, cellular retinoic acid-binding protein 1 (CRABP1), to understand better how folding is favored over aggregation. Analysis of folding kinetics of point mutants reveals that the folding pathway of CRABP1 involves early barrel closure. This folding mechanism protects sequences in CRABP1 that comprise cores of aggregates as identified by nuclear magnetic resonance. The amino acid conservation pattern in other iLBPs suggests that early barrel closure may be a general strategy for successful folding and minimization of aggregation. We suggest that folding mechanisms in general may incorporate steps that disfavor aggregation.


Assuntos
Dobramento de Proteína , Receptores do Ácido Retinoico/química , Animais , Cristalografia por Raios X , Escherichia coli/genética , Cinética , Camundongos , Simulação de Dinâmica Molecular , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores do Ácido Retinoico/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA