Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944965

RESUMO

The PEAK1 and Pragmin/PEAK2 pseudo-kinases have emerged as important components of the protein tyrosine kinase pathway implicated in cancer progression. They can signal using a scaffolding mechanism that involves a conserved split helical dimerization (SHED) module. We recently identified PEAK3 as a novel member of this family based on structural homology; however, its signaling mechanism remains unclear. In this study, we found that, although it can self-associate, PEAK3 shows higher evolutionary divergence than PEAK1/2. Moreover, the PEAK3 protein is strongly expressed in human hematopoietic cells and is upregulated in acute myeloid leukemia. Functionally, PEAK3 overexpression in U2OS sarcoma cells enhanced their growth and migratory properties, while its silencing in THP1 leukemic cells reduced these effects. Importantly, an intact SHED module was required for these PEAK3 oncogenic activities. Mechanistically, through a phosphokinase survey, we identified PEAK3 as a novel inducer of AKT signaling, independent of growth-factor stimulation. Then, proteomic analyses revealed that PEAK3 interacts with the signaling proteins GRB2 and ASAP1/2 and the protein kinase PYK2, and that these interactions require the SHED domain. Moreover, PEAK3 activated PYK2, which promoted PEAK3 tyrosine phosphorylation, its association with GRB2 and ASAP1, and AKT signaling. Thus, the PEAK1-3 pseudo-kinases may use a conserved SHED-dependent mechanism to activate specific signaling proteins to promote oncogenesis.

2.
J Cell Sci ; 134(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526472

RESUMO

PA28γ (also known as PSME3), a nuclear activator of the 20S proteasome, is involved in the degradation of several proteins regulating cell growth and proliferation and in the dynamics of various nuclear bodies, but its precise cellular functions remain unclear. Here, using a quantitative FLIM-FRET based microscopy assay monitoring close proximity between nucleosomes in living human cells, we show that PA28γ controls chromatin compaction. We find that its depletion induces a decompaction of pericentromeric heterochromatin, which is similar to what is observed upon the knockdown of HP1ß (also known as CBX1), a key factor of the heterochromatin structure. We show that PA28γ is present at HP1ß-containing repetitive DNA sequences abundant in heterochromatin and, importantly, that HP1ß on its own is unable to drive chromatin compaction without the presence of PA28γ. At the molecular level, we show that this novel function of PA28γ is independent of its stable interaction with the 20S proteasome, and most likely depends on its ability to maintain appropriate levels of H3K9me3 and H4K20me3, histone modifications that are involved in heterochromatin formation. Overall, our results implicate PA28γ as a key factor involved in the regulation of the higher order structure of chromatin.


Assuntos
Cromatina , Complexo de Endopeptidases do Proteassoma , Autoantígenos , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Heterocromatina/genética , Humanos , Complexo de Endopeptidases do Proteassoma/genética
3.
Proc Natl Acad Sci U S A ; 115(28): E6477-E6486, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29934401

RESUMO

PA28γ is a nuclear activator of the 20S proteasome involved in the regulation of several essential cellular processes, such as cell proliferation, apoptosis, nuclear dynamics, and cellular stress response. Unlike the 19S regulator of the proteasome, which specifically recognizes ubiquitylated proteins, PA28γ promotes the degradation of several substrates by the proteasome in an ATP- and ubiquitin-independent manner. However, its exact mechanisms of action are unclear and likely involve additional partners that remain to be identified. Here we report the identification of a cofactor of PA28γ, PIP30/FAM192A. PIP30 binds directly and specifically via its C-terminal end and in an interaction stabilized by casein kinase 2 phosphorylation to both free and 20S proteasome-associated PA28γ. Its recruitment to proteasome-containing complexes depends on PA28γ and its expression increases the association of PA28γ with the 20S proteasome in cells. Further dissection of its possible roles shows that PIP30 alters PA28γ-dependent activation of peptide degradation by the 20S proteasome in vitro and negatively controls in cells the presence of PA28γ in Cajal bodies by inhibition of its association with the key Cajal body component coilin. Taken together, our data show that PIP30 deeply affects PA28γ interactions with cellular proteins, including the 20S proteasome, demonstrating that it is an important regulator of PA28γ in cells and thus a new player in the control of the multiple functions of the proteasome within the nucleus.


Assuntos
Autoantígenos/metabolismo , Núcleo Celular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Autoantígenos/genética , Núcleo Celular/genética , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Domínios Proteicos , Proteínas/genética
4.
PLoS One ; 10(2): e0117857, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658096

RESUMO

Kif23 kinesin is an essential actor of cytokinesis in animals. It exists as two major isoforms, known as MKLP1 and CHO1, the longest of which, CHO1, contains two HXRXXS/T NDR/LATS kinase consensus sites. We demonstrate that these two sites are readily phosphorylated by NDR and LATS kinases in vitro, and this requires the presence of an upstream -5 histidine residue. We further show that these sites are phosphorylated in vivo and provide evidence revealing that LATS1,2 participate in the phosphorylation of the most C-terminal S814 site, present on both isoforms. This S814 phosphosite was previously reported to constitute a 14-3-3 binding site, which plays a role in Kif23 clustering during cytokinesis. Surprisingly, we found that phosphorylation of the upstream S716 NDR/LATS consensus site, present only in the longest Kif23 isoform, is required for efficient phosphorylation at S814, thus revealing sequential phosphorylation at these two sites, and differential regulation of Kif23-14-3-3 interaction for the two Kif23 isoforms. Finally, we provide evidence that Kif23 is largely unphosphorylated on S814 in post-abscission midbodies, making this Kif23 post-translational modification a potential marker to probe these structures.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Serina/metabolismo
5.
J Cell Sci ; 125(Pt 13): 3085-90, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22454515

RESUMO

The completion of cytokinesis requires abscission of the midbody, a microtubule-rich cytoplasmic bridge that connects the daughter cells before their final separation. Although it has been established that both the midbody structure and membrane fusion are essential for abscission, the biochemical machinery and the cellular processes of abscission remain ill-defined. Here we report that human Mob1A and Mob1B proteins are involved in the regulation of abscission of the intercellular bridge. The Mob family is a group of highly conserved proteins in eukaryotes, described as binding partners as well as co-activators of protein kinases of the Ndr family, and as members of the Hippo pathway. We show that depletion of Mob1A and Mob1B by RNAi causes abscission failure as a consequence of hyper-stabilization of microtubules in the midbody region. Interestingly, depleting Mob1 also increases cell motility after cytokinesis, and induces prolonged centriole separation in G1 phase. In contrast, centrosomes fail to split when either Mob1A or Mob1B is overexpressed. Our findings indicate that human Mob1 proteins are involved in the regulation of microtubule stability at the midbody. We conclude that Mob1A and Mob1B are needed for cell abscission and centriole re-joining after telophase and cytokinesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citocinese , Microtúbulos/fisiologia , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular , Polaridade Celular , Centrossomo/metabolismo , Centrossomo/fisiologia , Células HeLa , Humanos , Microscopia de Fluorescência , Microtúbulos/metabolismo , Estabilidade Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Telófase , Transfecção
6.
Mol Cell ; 29(5): 637-43, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18342609

RESUMO

During mitosis, chromosome alignment depends on the regulated dynamics of microtubules and on motor protein activities. At the kinetochore, the interplay between microtubule-binding proteins, motors, and kinases is poorly understood. Cenp-E is a kinetochore-associated kinesin involved in chromosome congression, but the mechanism by which this is achieved is unclear. Here, we present a study of the regulation of Cenp-E motility by using purified full-length (FL) Xenopus Cenp-E protein, which demonstrates that FL Cenp-E is a genuine plus-end-directed motor. Furthermore, we find that the Cenp-E tail completely blocks the motility of Cenp-E in vitro. This is achieved through direct interaction between its motor and tail domains. Finally, we show that Cenp-E autoinhibition is reversed by MPS1- or CDK1-cyclin B-mediated phosphorylation of the Cenp-E tail. This suggests a model of dynamic control of Cenp-E motility, and hence chromosome congression, dependent upon phosphorylation at the kinetochore.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Moleculares , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Fosforilação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas de Xenopus/genética , Xenopus laevis
7.
Exp Cell Res ; 313(6): 1225-39, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17292885

RESUMO

Whereas early cytokinesis events have been relatively well studied, little is known about its final stage, abscission. The Cdc14 phosphatase is involved in the regulation of multiple cell cycle events, and in all systems studied Cdc14 misexpression leads to cytokinesis defects. In this work, we have cloned two CDC14 cDNA from Xenopus, including a previously unreported CDC14B homologue. We use Xenopus and human cell lines and demonstrate that localization of Cdc14 proteins is independent of both cell-type and species specificity. Ectopically expressed XCdc14A is centrosomal in interphase and localizes to the midbody in cytokinesis. By using XCdc14A misregulation, we confirm its control over different cell cycle events and unravel new functions during abscission. XCdc14A regulates the G1/S and G2/M transitions. We show that Cdc25 is an in vitro substrate for XCdc14A and might be its target at the G2/M transition. Upregulated wild-type or phosphatase-dead XCdc14A arrest cells in a late stage of cytokinesis, connected by thin cytoplasmic bridges. It does not interfere with central spindle formation, nor with the relocalization of passenger protein and centralspindlin complexes to the midbody. We demonstrate that XCdc14A upregulation prevents targeting of exocyst and SNARE complexes to the midbody, both essential for abscission to occur.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Centríolos/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas de Xenopus/metabolismo , Xenopus/genética , Actinas/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular , Centríolos/fisiologia , Clonagem Molecular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microtúbulos/fisiologia , Proteínas SNARE/metabolismo , Xenopus/fisiologia , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiologia , Fosfatases cdc25/metabolismo
8.
EMBO Rep ; 8(1): 91-8, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17159919

RESUMO

The anaphase-promoting complex (APC) early mitotic inhibitor 1 (Emi1) is required to induce S- and M-phase entries by stimulating the accumulation of cyclin A and cyclin B through APC(Cdh1/cdc20) inhibition. In this report, we show that Emi1 proteolysis can be induced by cyclin A/cdk (cdk for cyclin-dependent kinase). Paradoxically, Emi1 is stable during G2 phase, when cyclin A/cdk, Plx1 and SCF(betatrcp) (SCF for Skp1-Cul1-Fbox protein)--which play a role in its degradation--are active. Here, we identify Pin1 as a new regulator of Emi1 that induces Emi1 stabilization by preventing its association with SCF(betatrcp). We show that Pin1 binds to Emi1 and prevents its association with betatrcp in an isomerization-dependent pathway. We also show that Emi1-Pin1 binding is present in vivo in XL2 cells during G2 phase and that this association protects Emi1 from being degraded during this phase of the cell cycle. We propose that S- and M-phase entries are mediated by the accumulation of cyclin A and cyclin B through a Pin1-dependent stabilization of Emi1 during G2.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Extratos Celulares/química , Ciclina A/metabolismo , Ciclina A/farmacologia , Ciclina B/metabolismo , Ciclina B/farmacologia , Quinases Ciclina-Dependentes/farmacologia , Fase G2 , Humanos , Imunoprecipitação , Mitose , Peptidilprolil Isomerase de Interação com NIMA , Xenopus , Proteínas de Xenopus/análise , Proteínas de Xenopus/genética
9.
J Mol Biol ; 337(1): 167-82, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-15001360

RESUMO

Proteins of the Mob1/phocein family are found in all eukaryotic cells. In yeast, they are activating subunits of Dbf2-related protein kinases involved in cell cycle control. Despite the wide occurrence of these proteins, their biological functions remain poorly understood. Here we report the solution structure of the Mob1 protein from Xenopus laevis solved by heteronuclear multidimensional NMR. The structure reveals a fold constituted by a central left-handed four-helix bundle, one connecting helix, two flanking helices and a long flexible loop. The clustering of two Cys and two His residues, and zinc measurement by atomic absorption spectroscopy support the existence of a zinc ion binding site. Our NMR structure is in good agreement with the recently described X-ray structure of human Mob1-A. Chemical shift perturbations observed upon addition of a peptide encompassing the basic region of the N-terminal regulatory domain of NDR kinase were used to identify and map a specific interaction between Mob1 and this kinase. The chemical shift changes indicate that the main interaction occurs on the acidic and conserved surface of Mob1. This surface was previously hypothesized to be the interaction surface according to the X-ray structure and was identified as functionally important in yeast. Our data suggest that the NDR kinase is a functional Dbf2 homologue in animal cells and contributes to the understanding of the molecular function of Mob1 proteins.


Assuntos
Proteínas de Ciclo Celular/química , Fosfoproteínas/química , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Xenopus/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , Zinco
11.
J Cell Sci ; 116(Pt 20): 4181-90, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12972506

RESUMO

Polyglutamylation is a post-translational modification initially discovered on tubulin. It has been implicated in multiple microtubule functions, including neuronal differentiation, axonemal beating and stability of the centrioles, and shown to modulate the interaction between tubulin and microtubule associated proteins. The enzymes catalysing this modification are not yet known. Starting with a partially purified fraction of mouse brain tubulin polyglutamylase, monoclonal antibodies were raised and used to further purify the enzyme by immunoprecipitation. The purified enzyme complex (Mr 360x103) displayed at least three major polypeptides of 32, 50 and 80x103, present in stochiometric amounts. We show that the 32x103 subunit is encoded by the mouse gene GTRGEO22, the mutation of which has recently been implicated in multiple defects in mice, including male sterility. We demonstrate that this subunit, called PGs1, has no catalytic activity on its own, but is implicated in the localisation of the enzyme at major sites of polyglutamylation, i.e. neurones, axonemes and centrioles.


Assuntos
Centríolos/metabolismo , Microtúbulos/metabolismo , Ácido Poliglutâmico/metabolismo , Subunidades Proteicas/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Células Cultivadas , Camundongos , Neurônios , Peptídeo Sintases , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA