Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(1): 86-95.e4, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36563695

RESUMO

Drug safety initiatives have endorsed human iPSC-derived cardiomyocytes (hiPSC-CMs) as an in vitro model for predicting drug-induced cardiac arrhythmia. However, the extent to which human-defined features of in vitro arrhythmia predict actual clinical risk has been much debated. Here, we trained a convolutional neural network classifier (CNN) to learn features of in vitro action potential recordings of hiPSC-CMs that are associated with lethal Torsade de Pointes arrhythmia. The CNN classifier accurately predicted the risk of drug-induced arrhythmia in people. The risk profile of the test drugs was similar across hiPSC-CMs derived from different healthy donors. In contrast, pathogenic mutations that cause arrhythmogenic cardiomyopathies in patients significantly increased the proarrhythmic propensity to certain intermediate and high-risk drugs in the hiPSC-CMs. Thus, deep learning can identify in vitro arrhythmic features that correlate with clinical arrhythmia and discern the influence of patient genetics on the risk of drug-induced arrhythmia.


Assuntos
Aprendizado Profundo , Células-Tronco Pluripotentes Induzidas , Torsades de Pointes , Humanos , Arritmias Cardíacas/induzido quimicamente , Torsades de Pointes/induzido quimicamente , Células-Tronco Pluripotentes Induzidas/fisiologia , Potenciais de Ação , Miócitos Cardíacos/fisiologia
2.
Eur Heart J ; 43(36): 3477-3489, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35728000

RESUMO

AIMS: Genetic dilated cardiomyopathy (DCM) is a leading cause of heart failure. Despite significant progress in understanding the genetic aetiologies of DCM, the molecular mechanisms underlying the pathogenesis of familial DCM remain unknown, translating to a lack of disease-specific therapies. The discovery of novel targets for the treatment of DCM was sought using phenotypic sceening assays in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) that recapitulate the disease phenotypes in vitro. METHODS AND RESULTS: Using patient-specific iPSCs carrying a pathogenic TNNT2 gene mutation (p.R183W) and CRISPR-based genome editing, a faithful DCM model in vitro was developed. An unbiased phenotypic screening in TNNT2 mutant iPSC-derived cardiomyocytes (iPSC-CMs) with small molecule kinase inhibitors (SMKIs) was performed to identify novel therapeutic targets. Two SMKIs, Gö 6976 and SB 203580, were discovered whose combinatorial treatment rescued contractile dysfunction in DCM iPSC-CMs carrying gene mutations of various ontologies (TNNT2, TTN, LMNA, PLN, TPM1, LAMA2). The combinatorial SMKI treatment upregulated the expression of genes that encode serine, glycine, and one-carbon metabolism enzymes and significantly increased the intracellular levels of glucose-derived serine and glycine in DCM iPSC-CMs. Furthermore, the treatment rescued the mitochondrial respiration defects and increased the levels of the tricarboxylic acid cycle metabolites and ATP in DCM iPSC-CMs. Finally, the rescue of the DCM phenotypes was mediated by the activating transcription factor 4 (ATF4) and its downstream effector genes, phosphoglycerate dehydrogenase (PHGDH), which encodes a critical enzyme of the serine biosynthesis pathway, and Tribbles 3 (TRIB3), a pseudokinase with pleiotropic cellular functions. CONCLUSIONS: A phenotypic screening platform using DCM iPSC-CMs was established for therapeutic target discovery. A combination of SMKIs ameliorated contractile and metabolic dysfunction in DCM iPSC-CMs mediated via the ATF4-dependent serine biosynthesis pathway. Together, these findings suggest that modulation of serine biosynthesis signalling may represent a novel genotype-agnostic therapeutic strategy for genetic DCM.


Assuntos
Cardiomiopatia Dilatada , Terapia de Alvo Molecular , Miócitos Cardíacos , Inibidores de Proteínas Quinases , Serina , Troponina T , Fator 4 Ativador da Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Carbazóis/farmacologia , Carbazóis/uso terapêutico , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Glucose/metabolismo , Glicina/biossíntese , Glicina/genética , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fosfoglicerato Desidrogenase/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Serina/antagonistas & inibidores , Serina/biossíntese , Serina/genética , Troponina T/genética , Troponina T/metabolismo
3.
Front Pharmacol ; 13: 869512, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694249

RESUMO

Circadian rhythms influence the recruitment of immune cells and the onset of inflammation, which is pivotal in the response to ischemic cardiac injury after a myocardial infarction (MI). The hyperacute immune response that occurs within the first few hours after a MI has not yet been elucidated. Therefore, we characterized the immune response and myocardial damage 3 hours after a MI occurs over a full twenty-four-hour period to investigate the role of the circadian rhythms in this response. MI was induced at Zeitgeber Time (ZT) 2, 8, 14, and 20 by permanent ligation of the left anterior descending coronary artery. Three hours after surgery, animals were terminated and blood and hearts collected to assess the immunological status and cardiac damage. Blood leukocyte numbers varied throughout the day, peaking during the rest-phase (ZT2 and 8). Extravasation of leukocytes was more pronounced during the active-phase (ZT14 and 20) and was associated with greater chemokine release to the blood and expression of adhesion molecules in the heart. Damage to the heart, measured by Troponin-I plasma levels, was elevated during this time frame. Clock gene oscillations remained intact in both MI-induced and sham-operated mice hearts, which could explain the circadian influence of the hyperacute inflammatory response after a MI. These findings are in line with the clinical observation that patients who experience a MI early in the morning (i.e., early active phase) have worse clinical outcomes. This study provides further insight on the immune response occurring shortly after an MI, which may contribute to the development of novel and optimization of current therapeutic approaches.

4.
Cancer Res ; 82(15): 2777-2791, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35763671

RESUMO

Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs. Consequently, use of ponatinib is restricted to the treatment of tumors carrying T315I-mutated BCR-ABL, which occurs in chronic myeloid leukemia (CML) and confers resistance to first- and second-generation inhibitors such as imatinib and nilotinib. Through parallel screening of cardiovascular toxicity and antitumor efficacy assays, we engineered safer analogs of ponatinib that retained potency against T315I BCR-ABL kinase activity and suppressed T315I mutant CML tumor growth. The new compounds were substantially less toxic in human cardiac vasculogenesis and cardiomyocyte contractility assays in vitro. The compounds showed a larger therapeutic window in vivo, leading to regression of human T315I mutant CML xenografts without cardiotoxicity. Comparison of the kinase inhibition profiles of ponatinib and the new compounds suggested that ponatinib cardiotoxicity is mediated by a few kinases, some of which were previously unassociated with cardiovascular disease. Overall, the study develops an approach using complex phenotypic assays to reduce the high risk of cardiovascular toxicity that is prevalent among small molecule oncology therapeutics. SIGNIFICANCE: Newly developed ponatinib analogs retain antitumor efficacy but elicit significantly decreased cardiotoxicity, representing a therapeutic opportunity for safer CML treatment.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Piridazinas , Antineoplásicos/efeitos adversos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Humanos , Imidazóis , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Piridazinas/farmacologia , Piridazinas/uso terapêutico
5.
Circulation ; 144(5): 382-392, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33928785

RESUMO

BACKGROUND: Phospholamban (PLN) is a critical regulator of calcium cycling and contractility in the heart. The loss of arginine at position 14 in PLN (R14del) is associated with dilated cardiomyopathy with a high prevalence of ventricular arrhythmias. How the R14 deletion causes dilated cardiomyopathy is poorly understood, and there are no disease-specific therapies. METHODS: We used single-cell RNA sequencing to uncover PLN R14del disease mechanisms in human induced pluripotent stem cells (hiPSC-CMs). We used both 2-dimensional and 3-dimensional functional contractility assays to evaluate the impact of modulating disease-relevant pathways in PLN R14del hiPSC-CMs. RESULTS: Modeling of the PLN R14del cardiomyopathy with isogenic pairs of hiPSC-CMs recapitulated the contractile deficit associated with the disease in vitro. Single-cell RNA sequencing revealed the induction of the unfolded protein response (UPR) pathway in PLN R14del compared with isogenic control hiPSC-CMs. The activation of UPR was also evident in the hearts from PLN R14del patients. Silencing of each of the 3 main UPR signaling branches (IRE1, ATF6, or PERK) by siRNA exacerbated the contractile dysfunction of PLN R14del hiPSC-CMs. We explored the therapeutic potential of activating the UPR with a small molecule activator, BiP (binding immunoglobulin protein) inducer X. PLN R14del hiPSC-CMs treated with BiP protein inducer X showed a dose-dependent amelioration of the contractility deficit in both 2-dimensional cultures and 3-dimensional engineered heart tissues without affecting calcium homeostasis. CONCLUSIONS: Together, these findings suggest that the UPR exerts a protective effect in the setting of PLN R14del cardiomyopathy and that modulation of the UPR might be exploited therapeutically.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Suscetibilidade a Doenças , Deleção de Sequência , Resposta a Proteínas não Dobradas , Adaptação Fisiológica , Biomarcadores , Cardiomiopatias/diagnóstico , Cardiomiopatias/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Gerenciamento Clínico , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Terapia de Alvo Molecular , Contração Miocárdica/efeitos dos fármacos , Análise de Célula Única , Transcriptoma
7.
Cell Stem Cell ; 27(5): 813-821.e6, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32931730

RESUMO

Modeling cardiac disorders with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes is a new paradigm for preclinical testing of candidate therapeutics. However, disease-relevant physiological assays can be complex, and the use of hiPSC-cardiomyocyte models of congenital disease phenotypes for guiding large-scale screening and medicinal chemistry have not been shown. We report chemical refinement of the antiarrhythmic drug mexiletine via high-throughput screening of hiPSC-CMs derived from patients with the cardiac rhythm disorder long QT syndrome 3 (LQT3) carrying SCN5A sodium channel variants. Using iterative cycles of medicinal chemistry synthesis and testing, we identified drug analogs with increased potency and selectivity for inhibiting late sodium current across a panel of 7 LQT3 sodium channel variants and suppressing arrhythmic activity across multiple genetic and pharmacological hiPSC-CM models of LQT3 with diverse backgrounds. These mexiletine analogs can be exploited as mechanistic probes and for clinical development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Antiarrítmicos/farmacologia , Humanos , Miócitos Cardíacos , Técnicas de Patch-Clamp
8.
Cell Rep ; 32(3): 107925, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32697997

RESUMO

Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have enormous potential for the study of human cardiac disorders. However, their physiological immaturity severely limits their utility as a model system and their adoption for drug discovery. Here, we describe maturation media designed to provide oxidative substrates adapted to the metabolic needs of human iPSC (hiPSC)-CMs. Compared with conventionally cultured hiPSC-CMs, metabolically matured hiPSC-CMs contract with greater force and show an increased reliance on cardiac sodium (Na+) channels and sarcoplasmic reticulum calcium (Ca2+) cycling. The media enhance the function, long-term survival, and sarcomere structures in engineered heart tissues. Use of the maturation media made it possible to reliably model two genetic cardiac diseases: long QT syndrome type 3 due to a mutation in the cardiac Na+ channel SCN5A and dilated cardiomyopathy due to a mutation in the RNA splicing factor RBM20. The maturation media should increase the fidelity of hiPSC-CMs as disease models.


Assuntos
Meios de Cultura/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cálcio/metabolismo , Doença do Sistema de Condução Cardíaco/genética , Doença do Sistema de Condução Cardíaco/fisiopatologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Engenharia Tecidual
9.
Front Cardiovasc Med ; 7: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258062

RESUMO

Background: Adenosine deaminase acting on RNA 1 (ADAR1) is a double-stranded RNA-editing enzyme that is involved in several functions including the deamination of adenosine to inosine, RNA interference (RNAi) mechanisms and microRNA (miRNA) processing, rendering ADAR1 essential for life. Methods and Results: To investigate whether maintenance of ADAR1 expression is required for normal myocardial homeostasis, we bypassed the early embryonic lethality of ADAR1-null mice through the use of a tamoxifen-inducible Cre recombinase under the control of the cardiac-specific α-myosin heavy chain promoter (αMHC). Targeted ADAR1 deletion in adult mice caused a significant increase in lethality accompanied by severe ventricular remodeling and quick and spontaneous cardiac dysfunction, induction of stress markers and overall reduced expression of miRNAs. Administration of a selective inhibitor of the unfolded protein response (UPR) stress significantly blunted the deleterious effects and improved cardiac function thereby prolonging animal survival. In vitro restoring miR-199a-5p levels in cardiomyocytes lacking ADAR1 diminished UPR activation and concomitant apoptosis. Conclusions: Our findings demonstrate an essential role for ADAR1 in cardiomyocyte survival and maintenance of cardiac function through a mechanism that integrates ADAR1 dependent miRNA processing and the suppression of UPR stress.

10.
Curr Cardiol Rep ; 20(7): 57, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802473

RESUMO

PURPOSE OF REVIEW: Cardiovascular disease is the leading contributor to mortality and morbidity. Many deaths of heart failure patients can be attributed to sudden cardiac death due primarily to ventricular arrhythmia. Currently, most anti-arrhythmics modulate ion channel conductivity or ß-adrenergic signaling, but these drugs have limited efficacy for some indications, and can potentially be proarrhythmic. RECENT FINDINGS: Recent studies have shown that mutations in proteins other than cardiac ion channels may confer susceptibility to congenital as well as acquired arrhythmias. Additionally, ion channels themselves are subject to regulation at the levels of channel expression, trafficking and post-translational modification; thus, research into the regulation of ion channels may elucidate disease mechanisms and potential therapeutic targets for future drug development. This review summarizes the current knowledge of the molecular mechanisms of arrhythmia susceptibility and discusses technological advances such as induced pluripotent stem cell-derived cardiomyocytes, gene editing, functional genomics, and physiological screening platforms that provide a new paradigm for discovery of new therapeutic targets to treat congenital and acquired diseases of the heart rhythm.


Assuntos
Antiarrítmicos/farmacologia , Arritmias Cardíacas/fisiopatologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Descoberta de Drogas/métodos , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/fisiologia , Miócitos Cardíacos/fisiologia
11.
Stem Cell Reports ; 9(3): 762-769, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28803917

RESUMO

Stem cell antigen 1-positive (SCA1+) cells (SPCs) have been investigated in cell-based cardiac repair and pharmacological research, although improved cardiac function after injection has been variable and the mode of action remains unclear. Circadian (24-hr) rhythms are biorhythms regulated by molecular clocks that play an important role in (patho)physiology. Here, we describe (1) the presence of a molecular circadian clock in SPCs and (2) circadian rhythmicity in SPC function. We isolated SPCs from human fetal heart and found that these cells possess a molecular clock based on typical oscillations in core clock components BMAL1 and CRY1. Functional analyses revealed that circadian rhythmicity also governs SPC proliferation, stress tolerance, and growth factor release, with large differences between peaks and troughs. We conclude that SPCs contain a circadian molecular clock that controls crucial cellular functions. Taking circadian rhythms into account may improve reproducibility and outcome of research and therapies using SPCs.


Assuntos
Ataxina-1/metabolismo , Relógios Circadianos , Ritmo Circadiano , Miocárdio/citologia , Miocárdio/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Apoptose , Movimento Celular , Proliferação de Células , Separação Celular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Comunicação Parácrina , Estresse Fisiológico
13.
Methods Mol Biol ; 1416: 225-32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27236674

RESUMO

Large animal models are an important preclinical tool for the evaluation of new interventions and their translation into clinical practice. The pig is a widely used animal model in multiple clinical fields, such as cardiology and orthopedics, and has been at the forefront of testing new therapeutics, including cell-based therapies. In the clinic, mesenchymal stem cells (MSCs) are used autologously, therefore isolated, and administrated into the same patient. For successful clinical translation of autologous approaches, the porcine model needs to test MSC in a similar manner. Since a limited number of MSCs can be isolated directly from the bone marrow, culturing techniques are needed to expand the population in vitro prior to therapeutic application. Here, we describe a protocol specifically tailored for the isolation and propagation of porcine-derived bone marrow MSCs.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Transplante de Células-Tronco Mesenquimais , Sus scrofa , Suínos , Transplante Autólogo
14.
Adv Drug Deliv Rev ; 106(Pt A): 104-115, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27133386

RESUMO

Stem cell-based therapies form an exciting new class of medicine that attempt to provide the body with the building blocks required for the reconstruction of damaged organs. However, delivering cells to the correct location, while preserving their integrity and functional properties, is a complex undertaking. These challenges have led to the development of a highly dynamic interdisciplinary research field, wherein medical, biological, and chemical sciences have collaborated to develop strategies to overcome the physiological barriers imposed on the cellular therapeutics. In this respect, improving the acute retention and subsequent survival of stem cells is key to effectively increase the effect of the therapy, while proper tissue integration is imperative for stem cells to functionally replace lost cells in damaged organs. In this review, we will use the heart as an example to highlight the current knowledge of therapeutic stem cell utilization, the existing pitfalls and limitations, and the approaches that have been developed to overcome them.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Mioblastos Cardíacos/citologia , Mioblastos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Humanos
15.
Adv Healthc Mater ; 5(9): 1071-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26913710

RESUMO

Inadequate cell retention and survival in cardiac stem cell therapy seems to be reducing the therapeutic effect of the injected stem cells. In order to ameliorate their regenerative effects, various biomaterials are being investigated for their potential supportive properties. Here, gelatin microspheres (MS) are utilized as microcarriers to improve the delivery and therapeutic efficacy of cardiac progenitor cells (CPCs) in the ischemic myocardium. The gelatin MS, generated from a water-in-oil emulsion, are able to accommodate the attachment of CPCs, thereby maintaining their cardiogenic potential. In a mouse model of myocardial infarction, we demonstrated the ability of these microcarriers to substantially enhance cell engraftment in the myocardium as indicated by bioluminescent imaging and histological analysis. However, despite an observed tenfold increase in CPC numbers in the myocardium, echocardiography, and histology reveals that mice treated with MS-CPCs show marginal improvement in cardiac function compared to CPCs only. Overall, a straightforward and translational approach is developed to increase the retention of stem cells in the ischemic myocardium. Even though the current biomaterial setup with CPCs as cell source does not translate into improved therapeutic action, coupling this developed technology with stem cell-derived cardiomyocytes can lead to an effective remuscularization therapy.


Assuntos
Células Imobilizadas , Gelatina/química , Microesferas , Mioblastos Cardíacos , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/transplante , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia
16.
Biomaterials ; 61: 339-48, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26043062

RESUMO

Cardiac cell therapy suffers from limitations related to poor engraftment and significant cell death after transplantation. In this regard, ex vivo tissue engineering is a tool that has been demonstrated to increase cell retention and survival. The aim of our study was to evaluate the therapeutic potential of a 3D-printed patch composed of human cardiac-derived progenitor cells (hCMPCs) in a hyaluronic acid/gelatin (HA/gel) based matrix. hCMPCs were printed in the HA/gel matrix (30 × 10(6) cells/ml) to form a biocomplex made of six perpendicularly printed layers with a surface of 2 × 2 cm and thickness of 400 µm, in which they retained their viability, proliferation and differentiation capability. The printed biocomplex was transplanted in a mouse model of myocardial infarction (MI). The application of the patch led to a significant reduction in adverse remodeling and preservation of cardiac performance as was shown by both MRI and histology. Furthermore, the matrix supported the long-term in vivo survival and engraftment of hCMPCs, which exhibited a temporal increase in cardiac and vascular differentiation markers over the course of the 4 week follow-up period. Overall, we developed an effective and translational approach to enhance hCMPC delivery and action in the heart.


Assuntos
Gelatina/química , Ácido Hialurônico/química , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Feminino , Humanos , Camundongos , Camundongos SCID , Miócitos Cardíacos/citologia , Pericárdio/patologia , Pericárdio/fisiopatologia , Impressão Tridimensional , Alicerces Teciduais , Resultado do Tratamento
18.
J Cardiovasc Transl Res ; 7(2): 232-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24395494

RESUMO

Activation of endogenous cardiac stem/progenitor cells (eCSCs) can improve cardiac repair after acute myocardial infarction. We studied whether the in situ activation of eCSCs by insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) could be increased using a newly developed hydrogel in chronic myocardial infarction (MI). One-month post-MI pigs underwent NOGA-guided intramyocardial injections of IGF-1/HGF (GF: both 0.5 µg/mL, n = 5) or IGF-1/HGF incorporated in UPy hydrogel (UPy-GF; both 0.5 µg/mL, n = 5). UPy hydrogel without added growth factors was administered to four control (CTRL) pigs. Left ventricular ejection fraction was increased in the UPy-GF and GF animals compared to CTRLs. UPy-GF delivery reduced pathological hypertrophy, led to the formation of new, small cardiomyocytes, and increased capillarization. The eCSC population was increased almost fourfold in the border zone of the UPy-GF-treated hearts compared to CTRL hearts. These results show that IGF-1/HGF therapy led to an improved cardiac function in chronic MI and that effect size could be further increased by using UPy hydrogel.


Assuntos
Fator de Crescimento de Hepatócito/administração & dosagem , Fator de Crescimento Insulin-Like I/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Implantes de Medicamento , Feminino , Fibrose , Hidrogéis , Injeções Intralesionais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica , Células-Tronco/patologia , Suínos , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
19.
Adv Healthc Mater ; 3(1): 70-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23788397

RESUMO

Minimally invasive intervention strategies after myocardial infarction use state-of-the-art catheter systems that are able to combine mapping of the infarcted area with precise, local injection of drugs. To this end, catheter delivery of drugs that are not immediately pumped out of the heart is still challenging, and requires a carrier matrix that in the solution state can be injected through a long catheter, and instantaneously gelates at the site of injection. To address this unmet need, a pH-switchable supramolecular hydrogel is developed. The supramolecular hydrogel is switched into a liquid at pH > 8.5, with a viscosity low enough to enable passage through a 1-m long catheter while rapidly forming a hydrogel in contact with tissue. The hydrogel has self-healing properties taking care of adjustment to the injection site. Growth factors are delivered from the hydrogel thereby clearly showing a reduction of infarct scar in a pig myocardial infarction model.


Assuntos
Materiais Biocompatíveis/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Infarto do Miocárdio/patologia , Animais , Materiais Biocompatíveis/metabolismo , Cateterismo Cardíaco , Modelos Animais de Doenças , Fator de Crescimento de Hepatócito/química , Fator de Crescimento de Hepatócito/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Concentração de Íons de Hidrogênio , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/metabolismo , Imageamento por Ressonância Magnética , Infarto do Miocárdio/metabolismo , Reologia , Suínos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA