Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27014689

RESUMO

The aim of this study was to evaluate life cycle environmental impacts associated with the generation of electricity from biogas produced by the anaerobic digestion (AD) of agricultural products and waste. Five real plants in Italy were considered, using maize silage, slurry, and tomato waste as feedstocks and cogenerating electricity and heat; the latter is not utilized. The results suggest that maize silage and the operation of anaerobic digesters, including open storage of digestate, are the main contributors to the impacts of biogas electricity. The system that uses animal slurry is the best option, except for the marine and terrestrial ecotoxicity. The results also suggest that it is environmentally better to have smaller plants using slurry and waste rather than bigger installations, which require maize silage to operate efficiently. Electricity from biogas is environmentally more sustainable than grid electricity for seven out of 11 impacts considered. However, in comparison with natural gas, biogas electricity is worse for seven out of 11 impacts. It also has mostly higher impacts than other renewables, with a few exceptions, notably solar photovoltaics. Thus, for the AD systems and mesophilic operating conditions considered in this study, biogas electricity can help reduce greenhouse gas (GHG) emissions relative to a fossil-intensive electricity mix; however, some other impacts increase. If mitigation of climate change is the main aim, other renewables have a greater potential to reduce GHG emissions. If, in addition to this, other impacts are considered, then hydro, wind, and geothermal power are better alternatives to biogas electricity. However, utilization of heat would improve significantly its environmental sustainability, particularly global warming potential, summer smog, and the depletion of abiotic resources and the ozone layer. Further improvements can be achieved by banning open digestate storage to prevent methane emissions and regulating digestate spreading onto land to minimize emissions of ammonia and related environmental impacts.

2.
Bioresour Technol ; 209: 40-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26946439

RESUMO

In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively.


Assuntos
Biocombustíveis , Silagem , Triticum/química , Zea mays/química , Anaerobiose , Conservação de Recursos Energéticos/métodos , Nylons , Triticum/microbiologia , Zea mays/microbiologia
3.
Sci Total Environ ; 548-549: 236-251, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26802352

RESUMO

Water Footprint is an indicator recently developed with the goal of quantifying the virtual content of water in products and/or services. It can also be used to identify the worldwide virtual water trade. Water Footprint is composed of three parts (green, blue and grey waters) that make the assessment complete in accordance with the Water Footprint Network and with the recent ISO14046. The importance of Water Footprint is linked to the need of taking consciousness about water content in products and services and of the achievable changes in productions, diets and market trades. In this study, a literature review has been completed on Water Footprint of agricultural productions. In particular, the focus was paid on crops for the production of food and bioenergy. From the review, the development of the Water Footprint concept emerged: in early studies the main goal was to assess products' water trade on a global scale, while in the subsequent years, the goal was the rigorous quantification of the three components for specific crops and in specific geographical areas. In the most recent assessments, similarities about the methodology and the employed tools emerged. For 96 scientific articles on Water Footprint indicator of agricultural productions, this literature review reports the main results and analyses weaknesses and strengths. Seventy-eight percent of studies aimed to quantify Water Footprint, while the remaining 22% analysed methodology, uncertainty, future trends and comparisons with other footprints. It emerged that most studies that quantified Water Footprint concerned cereals (33%), among which maize and wheat were the most investigated crops. In 46% of studies all the three components were assessed, while in 18% no indication about the subdivision was given; in the remaining 37%, only blue or green and blue components were quantified.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Abastecimento de Água/estatística & dados numéricos , Irrigação Agrícola/estatística & dados numéricos , Produção Agrícola/métodos , Produtos Agrícolas , Grão Comestível , Triticum , Zea mays
4.
Sci Total Environ ; 541: 210-217, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410696

RESUMO

Although several studies have been carried out on Short Rotation Coppice (SRC) plantations and on their environmental performances, there is a lack of information about the environmental impact of the harvesting operations. In this study, using LCA approach, the environmental performance of two different harvesting solutions for Short Rotation Coppice plantations was evaluated. In more details, for 2-years cutting time poplar plantations, harvesting with a self-propelled forager equipped with a specific header was compared in terms of environmental impact with a tractor-based solution. The LCI was built with experimental data collected during field tests carried out over about 70 ha of SRC plantation in Northern Italy. The following nine impact potentials were evaluated according to the selected method: climate change (CC), ozone depletion (OD), particulate matter (PM), photochemical ozone formation (POF), acidification (TA), freshwater eutrophication (FE), terrestrial eutrophication (TE), marine eutrophication (ME) and mineral, fossil and renewable resource depletion (MFRD). Although harvesting with self-propelled foragers requires higher power and higher diesel consumption, it achieves better environmental performances respect to the harvest with the tractor-based solution. The tractor-based option is characterized by lower operative field capacity (about - 70% for all the evaluated impact categories except for MFRD, which is - 94% compared to the first option). The environmental differences are mainly related to the different machine productivity. From an environmental point of view, respect to the harvesting with self-propelled foragers, the tractor-based solution can achieve a lower environmental impact only in small SRC plantations (<1-2 ha).

5.
Sci Total Environ ; 539: 450-459, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26383852

RESUMO

The aim of the study was to assess, through a cradle to farm gate Life Cycle Assessment, different mitigation strategies of the potential environmental impacts of milk production at farm level. The environmental performances of a conventional intensive dairy farm in Northern Italy (baseline scenario) were compared with the results obtained: from the introduction of the third daily milking and from the adoption of anaerobic digestion (AD) of animal slurry in a consortium AD plant. The AD plant, fed only with animal slurries coming also from nearby farms. Key parameters concerning on-farm activities (forage production, energy consumptions, agricultural machines maintenance, manure and livestock management), off-farm activities (production of fertilizers, pesticides, bedding materials, purchased forages, purchased concentrate feed, replacement animals, agricultural machines manufacturing, electricity, fuel) and transportation were considered. The functional unit was 1kg fat and protein corrected milk (FPCM) leaving the farm gate. The selected environmental impact categories were: global warming potential, acidification, eutrophication, photochemical oxidation and non-renewable energy use. The production of 1kg of FPCM caused, in the baseline scenario, the following environmental impact potentials: global warming potential 1.12kg CO2 eq; acidification 15.5g SO2 eq; eutrophication 5.62g PO4(3-) eq; photochemical oxidation 0.87g C2H4 eq/kg FPCM; energy use 4.66MJeq. The increase of milking frequency improved environmental performances for all impact categories in comparison with the baseline scenario; in particular acidification and eutrophication potentials showed the largest reductions (-11 and -12%, respectively). In anaerobic digestion scenario, compared to the baseline one, most of the impact potentials were strongly reduced. In particular the most important advantages were in terms of acidification (-29%), global warming (-22%) and eutrophication potential (-18%). The AD of cow slurry is confirmed as an effective strategy to mitigate the environmental impact of milk production at farm level.


Assuntos
Indústria de Laticínios/métodos , Poluição Ambiental/prevenção & controle , Anaerobiose , Animais , Bovinos , Poluição Ambiental/análise , Poluição Ambiental/estatística & dados numéricos , Eutrofização , Feminino , Itália
6.
Bioresour Technol ; 193: 256-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26141286

RESUMO

In Europe, thanks to public subsidy, the production of electricity from anaerobic digestion (AD) of agricultural feedstock has considerably grown and several AD plants were built. When AD plants are concentrated in specific areas (e.g., Northern Italy), increases of feedstock' prices and transport distances can be observed. In this context, as regards low-energy density feedstock, the present research was designed to estimate the influence of the related long-distance transport on the environmental performances of the biogas-to-electricity process. For this purpose the following transport systems were considered: farm trailers and trucks. For small distances (<5 km), the whole plant silage shows the lowest impact; however, when distances increase, silages with higher energy density (even though characterised by lower methane production per hectare) become more environmentally sustainable. The transport by trucks achieves better environmental performances especially for distances greater than 25 km.


Assuntos
Metano/química , Zea mays/química , Agricultura/métodos , Anaerobiose , Biocombustíveis , Eletricidade , Transferência de Energia , Meio Ambiente , Europa (Continente) , Centrais Elétricas , Silagem
7.
Sci Total Environ ; 526: 88-97, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25918896

RESUMO

Tomato processing involves a significant production of residues, mainly constituted by discarded tomatoes, skins, seeds and pulp. Often, these residues are not valorized and represent an added cost for manufacturing companies because of disposal processes, with environmental issues due to the difficult management. The exploitation of these residual materials results complex as their availability is mainly concentrated in few months. A possible solution is the production of biogas employed in a Combine Heat and Power engine for energy production, in line with the 2020 targets of European Union in terms of promotion of energy from renewable resources and greenhouse gas emission reduction. The tomato by-product utilization for energy production as a strategy to reduce the environmental load of tomato purée was evaluated by means of Life Cycle Assessment. Two scenarios were considered: Baseline Scenario - tomato by-products are sent back to the tomato fields as organic fertilizers; Alternative Scenario - tomato by-products are employed in a nearby biogas plant for energy production. Methane production of tomato by-products was assessed by means of specific laboratory tests. The comparison between the two scenarios highlighted reductions for all the impact categories with the Alternative Scenario. The most important reductions are related to particulate matter (-5.3%), climate change (-6.4%) and ozone depletion (-13.4%). Although small, the reduction of the environmental impact cannot be neglected; for example for climate change, the anaerobic digestion of by-products allows a saving of GHG emissions that, over the whole year, is equal to 1.567 tons of CO2 eq. The results of this study could be up-scaled to the food industries with high heat demand producing considerable amounts of fermentable by-products employable as feedstock for biogas production.


Assuntos
Agricultura , Solanum lycopersicum , Gerenciamento de Resíduos/métodos , Anaerobiose , Indústria Alimentícia
8.
Waste Manag ; 41: 50-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25892438

RESUMO

The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.


Assuntos
Biocombustíveis/análise , Esgotos/química , Silagem , Anaerobiose , Animais , Suínos , Zea mays
9.
Sci Total Environ ; 494-495: 119-28, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25038430

RESUMO

Italy is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from fertilizers (leaching, volatilization) as well as methane emissions should be implemented.


Assuntos
Agricultura/métodos , Oryza/crescimento & desenvolvimento , Poluentes Atmosféricos/análise , Meio Ambiente , Monitoramento Ambiental , Fertilizantes , Itália , Metano/análise
10.
Sci Total Environ ; 466-467: 1066-77, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994820

RESUMO

The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop.


Assuntos
Agricultura/métodos , Meio Ambiente , Metano/metabolismo , Energia Renovável , Triticum/fisiologia , Zea mays/fisiologia , Biomassa , Itália , Estações do Ano , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
11.
Sci Total Environ ; 463-464: 541-51, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23831800

RESUMO

The possibility of limiting the global warming is strictly linked to the reduction of GHG emissions. Renewable energy both allows reducing emissions and permits to delay fossil fuel depletion. The anaerobic digestion of animal manure and energy crops is a promising way of reducing GHG emissions. In Italy agricultural biogas production was considerably increased; nowadays there are about 520 agricultural biogas plants. The increasing number of biogas plants, especially of those larger than 500 kW(e) (electrical power), involves a high consumption of energy crops, large transport distances of biomass and digestate and difficulties on thermal energy valorization. In this study the energetic (CED) and environmental (GHG emissions) profiles associated with the production of electricity derived from biogas have been identified. Three biogas plants located in Northern Italy have been analyzed. The study has been carried out considering a cradle-to-grave perspective and thus, special attention has been paid on the feedstock production and biogas production process. The influences on the results taking into account different plant sizes and feeding rate has been assessed in detail. Energy analysis was performed using the Cumulative Energy Demand method (CED). The climate change was calculated for a 100-year time frame based on GHG emissions indicated as CO2 equivalents (eq) and defined by the IPCC (2006). In comparison to the fossil reference system, the electricity production using biogas saves GHG emissions from 0.188 to 1.193 kg CO2eq per kWh(e). Electricity supply from biogas can also contribute to a considerable reduction of the use of fossil energy carriers (from -3.97 to 10.08 MJ(fossil) per kWh(e)). The electricity production from biogas has a big potential for energy savings and reduction of GHG emissions. Efficient utilization of the cogenerated heat can substantially improve the GHG balance of electricity production from biogas.


Assuntos
Biocombustíveis , Meio Ambiente , Anaerobiose , Animais , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Itália , Esterco , Centrais Elétricas , Silagem , Suínos , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA