Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 42: 169-186, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857477

RESUMO

Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.


Assuntos
Primatas/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular/fisiologia , Animais , Visão de Cores/fisiologia , Percepção de Forma/fisiologia , Técnicas de Patch-Clamp , Estimulação Luminosa , Células Ganglionares da Retina/fisiologia , Análise de Célula Única , Percepção Visual/fisiologia
2.
Network ; 24(1): 27-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23194406

RESUMO

It has recently become possible to identify cone photoreceptors in primate retina from multi-electrode recordings of ganglion cell spiking driven by visual stimuli of sufficiently high spatial resolution. In this paper we present a statistical approach to the problem of identifying the number, locations, and color types of the cones observed in this type of experiment. We develop an adaptive Markov Chain Monte Carlo (MCMC) method that explores the space of cone configurations, using a Linear-Nonlinear-Poisson (LNP) encoding model of ganglion cell spiking output, while analytically integrating out the functional weights between cones and ganglion cells. This method provides information about our posterior certainty about the inferred cone properties, and additionally leads to improvements in both the speed and quality of the inferred cone maps, compared to earlier "greedy" computational approaches.


Assuntos
Método de Monte Carlo , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/fisiologia , Adaptação Fisiológica , Algoritmos , Animais , Simulação por Computador , Fenômenos Eletrofisiológicos , Funções Verossimilhança , Modelos Lineares , Macaca fascicularis , Macaca mulatta , Microeletrodos , Dinâmica não Linear , Estimulação Luminosa , Distribuição de Poisson
3.
Annu Rev Neurosci ; 30: 1-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17335403

RESUMO

The function of any neural circuit is governed by connectivity of neurons in the circuit and the computations performed by the neurons. Recent research on retinal function has substantially advanced understanding in both areas. First, visual information is transmitted to the brain by at least 17 distinct retinal ganglion cell types defined by characteristic morphology, light response properties, and central projections. These findings provide a much more accurate view of the parallel visual pathways emanating from the retina than do previous models, and they highlight the importance of identifying distinct cell types and their connectivity in other neural circuits. Second, encoding of visual information involves significant temporal structure and interactions in the spike trains of retinal neurons. The functional importance of this structure is revealed by computational analysis of encoding and decoding, an approach that may be applicable to understanding the function of other neural circuits.


Assuntos
Potenciais de Ação/fisiologia , Primatas/fisiologia , Retina/fisiologia , Visão Ocular/fisiologia , Vias Visuais/fisiologia , Animais , Humanos , Modelos Neurológicos , Primatas/anatomia & histologia , Retina/anatomia & histologia , Células Ganglionares da Retina/fisiologia , Transmissão Sináptica/fisiologia , Campos Visuais/fisiologia , Vias Visuais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA