Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986947

RESUMO

Biomarkers of biological age that predict the risk of disease and expected lifespan better than chronological age are key to efficient and cost-effective healthcare1-3. To advance a personalized approach to healthcare, such biomarkers must reliably and accurately capture individual biology, predict biological age, and provide scalable and cost-effective measurements. We developed a novel approach - image-based chromatin and epigenetic age (ImAge) that captures intrinsic progressions of biological age, which readily emerge as principal changes in the spatial organization of chromatin and epigenetic marks in single nuclei without regression on chronological age. ImAge captured the expected acceleration or deceleration of biological age in mice treated with chemotherapy or following a caloric restriction regimen, respectively. ImAge from chronologically identical mice inversely correlated with their locomotor activity (greater activity for younger ImAge), consistent with the widely accepted role of locomotion as an aging biomarker across species. Finally, we demonstrated that ImAge is reduced following transient expression of OSKM cassette in the liver and skeletal muscles and reveals heterogeneity of in vivo reprogramming. We propose that ImAge represents the first-in-class imaging-based biomarker of aging with single-cell resolution.

2.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232690

RESUMO

Human nucleolin (hNcl) is a multifunctional protein involved in the progression of various cancers and plays a key role in other pathologies. Therefore, there is still unsatisfied demand for hNcl modulators. Recently, we demonstrated that the plant ent-kaurane diterpene oridonin inhibits hNcl but, unfortunately, this compound is quite toxic for healthy cells. Trachylobane diterpene 6,19-dihydroxy-ent-trachiloban-17-oic acid (compound 12) extracted from Psiadia punctulata (DC.) Vatke (Asteraceae) emerged as a ligand of hNcl from a cellular thermal shift assay (CETSA)-based screening of a small library of diterpenes. Effective interaction between this compound and the protein was demonstrated to occur both in vitro and inside two different types of cancer cells. Based on the experimental and computational data, a model of the hNcl/compound 12 complex was built. Because of this binding, hNcl mRNA chaperone activity was significantly reduced, and the level of phosphorylation of the protein was affected. At the biological level, cancer cell incubation with compound 12 produced a cell cycle block in the subG0/G1 phase and induced early apoptosis, whereas no cytotoxicity towards healthy cells was observed. Overall, these results suggested that 6,19-dihydroxy-ent-trachiloban-17-oic could represent a selective antitumoral agent and a promising lead for designing innovative hNcl inhibitors also usable for therapeutic purposes.


Assuntos
Asteraceae , Diterpenos do Tipo Caurano , Diterpenos , Neoplasias , Asteraceae/química , Diterpenos/química , Diterpenos/farmacologia , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Fosfoproteínas , Fosforilação , RNA Mensageiro , Proteínas de Ligação a RNA , Nucleolina
3.
J Pharmacol Toxicol Methods ; 114: 107157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143957

RESUMO

INTRODUCTION: Despite viral suppression due to combination antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) continue to affect half of people with HIV, suggesting that certain antiretrovirals (ARVs) may contribute to HAND. METHODS: We examined the effects of nucleoside/nucleotide reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) and the integrase inhibitors dolutegravir (DTG) and elvitegravir (EVG) on viability, structure, and function of glutamatergic neurons (a subtype of CNS neuron involved in cognition) derived from human induced pluripotent stem cells (hiPSC-neurons), and primary human neural precursor cells (hNPCs), which are responsible for neurogenesis. RESULTS: Using automated digital microscopy and image analysis (high content analysis, HCA), we found that DTG, EVG, and TDF decreased hiPSC-neuron viability, neurites, and synapses after 7 days of treatment. Analysis of hiPSC-neuron calcium activity using Kinetic Image Cytometry (KIC) demonstrated that DTG and EVG also decreased the frequency and magnitude of intracellular calcium transients. Longer ARV exposures and simultaneous exposure to multiple ARVs increased the magnitude of these neurotoxic effects. Using the Microscopic Imaging of Epigenetic Landscapes (MIEL) assay, we found that TDF decreased hNPC viability and changed the distribution of histone modifications that regulate chromatin packing, suggesting that TDF may reduce neuroprogenitor pools important for CNS development and maintenance of cognition in adults. CONCLUSION: This study establishes human preclinical assays that can screen potential ARVs for CNS toxicity to develop safer cART regimens and HAND therapeutics.


Assuntos
Infecções por HIV , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Adulto , Epigênese Genética , Infecções por HIV/tratamento farmacológico , Humanos , Citometria por Imagem , Neurônios
4.
Phytochemistry ; 185: 112685, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33607577

RESUMO

Four undescribed and 17 known diterpenoids were isolated from the roots of Zhumeria majdae Rech.f. & Wendelbo. Using 1D and 2D NMR spectroscopy, ECD spectroscopy, and HRESIMS data analysis, the structures of the undescribed compounds were elucidated. The anti-proliferative activity of isolated compounds was evaluated against HeLa and MCF7 cancer cell lines. The binding affinity of all compounds to HSP90, one of the targets for the modern anticancer therapy, was investigated using surface plasmon resonance. The results demonstrated that lanugon Q interacted with the chaperone. To explain its mechanism of action, experimental and computational tests were also conducted.


Assuntos
Diterpenos , Salvia , Diterpenos/farmacologia , Proteínas de Choque Térmico , Estrutura Molecular , Extratos Vegetais , Raízes de Plantas
5.
J Nat Prod ; 82(3): 539-549, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30839211

RESUMO

Ten new (1-10) and six known (11-16) fusicoccane diterpenes were isolated from the roots of Hypoestes forsskaolii. The structural characterization of 1-10 was performed by spectroscopic analysis, including 1D and 2D NMR, ECD, and HRESIMS experiments. From a perspective of obtaining potential Hsp90α inhibitors, the isolates were screened by surface plasmon resonance measurements and their cytotoxic activity was assayed using Jurkat and HeLa cancer cells. Compound 6, 18-hydroxyhypoestenone, was shown to be the most active compound against Hsp90, and its interactions were studied also by biochemical and cellular assays and by molecular docking.


Assuntos
Acanthaceae/química , Diterpenos/isolamento & purificação , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Diterpenos/química , Células HeLa , Humanos , Células Jurkat , Estrutura Molecular , Análise Espectral/métodos
6.
Sci Rep ; 8(1): 16735, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425290

RESUMO

The bioactive plant diterpene oridonin displays important pharmacological activities and is widely used in traditional Chinese medicine; however, its molecular mechanism of action is still incompletely described. In vitro and in vivo data have demonstrated anti-tumor activity of oridonin and its ability to interfere with several cell pathways; however, presently only the molecular chaperone HSP70 has been identified as a direct potential target of this compound. Here, using a combination of different proteomic approaches, innovative Cellular Thermal Shift Assay (CETSA) experiments, and classical biochemical methods, we demonstrate that oridonin interacts with Nucleolin, effectively modulating the activity of this multifunctional protein. The ability of oridonin to target Nucleolin and/or HSP70 could account for the bioactivity profile of this plant diterpene. Recently, Nucleolin has attracted attention as a druggable target, as its diverse functions are implicated in pathological processes such as cancer, inflammation, and viral infection. However, up to now, no small molecule as Nucleolin binders has been reported, thus our finding represents the first evidence of Nucleolin modulation by a small inhibitor.


Assuntos
Antineoplásicos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Fosfoproteínas/antagonistas & inibidores , Proteínas de Ligação a RNA/antagonistas & inibidores , Antineoplásicos/metabolismo , Transporte Biológico , Diterpenos do Tipo Caurano/metabolismo , Células HeLa , Humanos , Células Jurkat , Nucleolina
7.
Chemistry ; 24(62): 16516-16520, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30136746

RESUMO

Bioactive 2-benzazepines were accessed in an atom- and step-economical manner through a versatile palladium-catalyzed C-H activation strategy. The C-H arylation required low catalyst loading and a mild base, which was reflected by a broad scope and high functional-group tolerance. The benzotriazolodiazepinones were identified as new heat shock protein 90 (Hsp90) inhibiting lead compounds, with considerable potential for anti-cancer applications.

8.
Sci Rep ; 7: 41273, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117438

RESUMO

Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the ß-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Ésteres/farmacologia , PPAR gama/agonistas , Proteômica/métodos , Apoptose/efeitos dos fármacos , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Ésteres/química , Células HEK293 , Células HT29 , Humanos , Células Jurkat , Cinética , Ligantes , Simulação de Acoplamento Molecular , Estabilidade Proteica , Reprodutibilidade dos Testes , Rosiglitazona , Ressonância de Plasmônio de Superfície , Termodinâmica , Tiazolidinedionas/farmacologia , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA