Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroophthalmology ; 48(5): 369-372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145320

RESUMO

Pelizaeus-Merzbacher-like disease (PMLD, OMIM #608804) is an autosomal recessive hypomyelinating leukodystrophy caused by homozygous variants in the GJC2 gene. It usually presents in the first months of life with nystagmus, developmental delay, and diffuse hypomyelination on brain magnetic resonance imaging (MRI). We report a case of a 3-year-old boy that presented with nystagmus and global developmental delay. MRI showed diffuse hypomyelination, including the cerebellum. Pelizaeus-Merzbacher disease (PMD) was suspected; however, no pathological variants of the PLP1 gene were found. Exome sequencing found variants in the GJC2 gene, leading to a diagnosis of PMLD. The combination of global developmental delay, hypomyelination, and nystagmus in a child should raise suspicion of PMD and PMLD. Unlike PMD, however, hypomyelination of the brainstem and cerebellum are frequently seen and brainstem auditory evoked potentials are usually normal in PMLD. The latter has an overall better prognosis than the former as well. Epidemiological studies on leukodystrophies have found conflicting results on which disease is more common. However, PMLD is a rare leukodystrophy and both PMLD and PMD should be considered in any child with developmental delay, hypomyelination, and nystagmus.

2.
Brain Res Bull ; 180: 1-11, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34954227

RESUMO

Sports-related concussions are particularly common during adolescence, and there is insufficient knowledge about how recurrent concussions in this phase of life alter the metabolism of essential structures for memory in adulthood. In this sense, our experimental data revealed that seven recurrent concussions (RC) in 35-day-old rats decreased short-term and long-term memory in the object recognition test (ORT) 30 days after injury. The RC protocol did not alter motor and anxious behavior and the immunoreactivity of brain-derived neurotrophic factor (BDNF) in the cerebral cortex. Recurrent concussions induced the inflammatory/oxidative stress characterized here by increased glial fibrillary acidic protein (GFAP), interleukin 1ß (IL 1ß), 4-hydroxynonenal (4 HNE), protein carbonyl immunoreactivity, and 2',7'-dichlorofluorescein diacetate oxidation (DCFH) levels and lower total antioxidant capacity (TAC). Inhibited Na+,K+-ATPase activity (specifically isoform α2/3) followed by Km (Michaelis-Menten constant) for increased ATP levels and decreased immunodetection of alpha subunit of this enzyme, suggesting that cognitive impairment after RC is caused by the inability of surviving neurons to maintain ionic gradients in selected targets to inflammatory/oxidative damage, such as Na,K-ATPase activity.


Assuntos
Concussão Encefálica , Disfunção Cognitiva , Hipocampo , Transtornos da Memória , Doenças Neuroinflamatórias , Estresse Oxidativo/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Memória Espacial/fisiologia , Fatores Etários , Animais , Concussão Encefálica/complicações , Concussão Encefálica/imunologia , Concussão Encefálica/metabolismo , Concussão Encefálica/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Hipocampo/imunologia , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/imunologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Ratos , Ratos Wistar
3.
Scand J Med Sci Sports ; 26(10): 1160-70, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26589249

RESUMO

Although the intake of nonsteroidal anti-inflammatory drugs (NSAIDs) intake by athletes prevents soreness, little is known concerning their role in exercise performance. This study assessed the effects of ibuprofen intake on an exhaustive protocol test after 6 weeks of swimming training in rats. Animals were divided into sedentary and training groups. After training, animals were subdivided into two subsets: saline or ibuprofen. Afterwards, three repeated swimming bouts were performed by the groups. Ibuprofen (15 mg/kg) was administered once a day. Pain measurements were performed and inflammatory and oxidative stress parameters were assayed in cerebral cortex and gastrocnemius muscle. Training, ibuprofen administration, or both combined (P < 0.05; 211 ± 18s, 200 ± 31s, and 279 ± 23s) increased exercise time to exhaustion. Training decreased the acetylcholinesterase (AChE) activity (P < 0.05; 149 ± 11) in cerebral cortex. Ibuprofen intake decreased the AChE activity after exhaustive protocol test in trained and sedentary rats (P < 0.05; 270 ± 60; 171 ± 38; and 273 ± 29). It also prevented neuronal tumor necrosis factor-α (TNF-α) and interleukin (IL 1ß) increase. Fatigue elicited by this exhaustive protocol may involve disturbances of the central nervous system. Additive anti-inflammatory effects of exercise and ibuprofen intake support the hypothesis that this combination may constitute a more effective approach. In addition, ergogenic aids may be a useful means to prevent exercise-induced fatigue.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Fadiga/prevenção & controle , Ibuprofeno/farmacologia , Condicionamento Físico Animal/fisiologia , Resistência Física/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Córtex Cerebral/metabolismo , Fadiga/metabolismo , Ibuprofeno/uso terapêutico , Interleucina-1beta/metabolismo , Masculino , Músculo Esquelético/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dor/etiologia , Dor/prevenção & controle , Medição da Dor , Carbonilação Proteica , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Natação/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
4.
Neuroscience ; 298: 171-9, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25907445

RESUMO

Epilepsy is a life-shortening brain disorder affecting approximately 1% of the worldwide population. Most epilepsy patients are refractory to currently available antiepileptic drugs (AEDs). Knowledge about the mechanisms underlying seizure activity and probing for new AEDs is fundamental to the discovery of new therapeutic strategies. Brain Na(+), K(+)-ATPase activity contributes to the maintenance of the electrochemical gradients underlying neuronal resting and action potentials as well as the uptake and release of neurotransmitters. Accordingly, a decrease of Na(+), K(+)-ATPase increases neuronal excitability and may predispose to appearing of seizure activity. In the present study, we tested the hypothesis that activation of Na(+), K(+)-ATPase activity with a specific antibody (DRRSAb) raised against a regulatory site in the α subunit would decrease seizure susceptibility. We found that incubation of hippocampal homogenates with DRRSAb (1 µM) increased total and α1 Na(+), K(+)-ATPase activities. A higher concentration (3 µM) increased total, α1 and α2/α3 Na(+), K(+)-ATPase activities. Intrahippocampal injection of DRRSAb decreased the susceptibility of post status epilepticus animals to pentylenetetrazol (PTZ)-induced myoclonic seizures. In contrast, administration of DRRSAb into the hippocampus of naïve animals facilitated the appearance of PTZ-induced seizures. Quantitative analysis of hippocampal electroencephalography (EEG) recordings revealed that DRRSAb increased the percentage of total power contributed by the delta frequency band (0-3 Hz) to a large irregular amplitude pattern of hippocampal EEG. On the other hand, we found no DRRSAb-induced changes regarding the theta functional state. Further studies are necessary to define the potential of Na(+), K(+)-ATPase activation as a new therapeutic approach for seizure disorders.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipocampo/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Estado Epiléptico/patologia , Animais , Anticorpos/uso terapêutico , Anticonvulsivantes/uso terapêutico , Ondas Encefálicas/efeitos dos fármacos , Convulsivantes/toxicidade , Modelos Animais de Doenças , Eletroencefalografia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Pentilenotetrazol/toxicidade , Pilocarpina/toxicidade , Ratos , ATPase Trocadora de Sódio-Potássio/imunologia , Estatísticas não Paramétricas , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Fatores de Tempo
5.
Vet Microbiol ; 174(1-2): 180-5, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25219295

RESUMO

Fumonisin B1 (FB1) is a mycotoxin produced by Fusarium spp. It has been reported to be a potential cause of liver cancer in rats and esophageal cancer in humans. The underlying mechanisms of FB1 toxicity are thought to be related to the inhibition of ceramide synthase, causing an accumulation of sphingosine (SO) and sphinganine (SA), which in turn may cause tissue functional impairment and the development of oxidative stress. Therefore, in this study, we investigate the effects of an FB1-contaminated diet on markers of oxidative stress in chick liver. A total of 24 male broiler chicks (Cobb 500) were fed a standard control diet or a diet contaminated with FB1 (100mg/kg) for 21 days, starting on postnatal day one. The feed and animals were weighed on days 0, 7, 14 and 21 to estimate the feed conversion ratio, and at 21 days, the liver weight and liver relative weight were determined. At the end of the experiment, samples of blood and liver were collected. The blood was used to quantify the SA/SO ratio, and the liver was used to determine the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST); ascorbic acid levels (VitC), non-protein thiol (NPSH) levels and TBARS content were also determined. The FB1 diet increased the liver weight, liver relative weight, feed conversion and SA/SO ratio. Furthermore, hepatic TBARS levels, Vit C content and CAT activity were also increased. Conversely, the activities of SOD, GST and NPSH levels, in the liver were not altered by the mycotoxin-contaminated diet. In summary, we showed that subacute exposure of broiler chicks to FB1 induced liver oxidative stress concomitantly with SA/SO accumulation.


Assuntos
Galinhas/fisiologia , Fumonisinas/toxicidade , Fusarium/química , Micotoxinas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Dieta/veterinária , Glutationa Transferase/metabolismo , Fígado/metabolismo , Masculino , Tamanho do Órgão/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/sangue , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico
6.
Neuroscience ; 146(4): 1879-87, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17467181

RESUMO

Methylmalonic acid (MMA) is an endogenous convulsing compound that accumulates in methylmalonic acidemia, an inborn error of the metabolism characterized by severe neurological dysfunction, including seizures. The mechanisms by which MMA causes seizures involves the activation of the N-methyl-D-aspartate (NMDA) receptors, but whether GABAergic mechanisms are involved in the convulsions induced by MMA is not known. Therefore, in the current study we investigated the involvement of GABAergic mechanisms in the convulsions induced by MMA. Adult rats were injected (i.c.v.) with muscimol (46 pmol/1 microl), baclofen (0.03, 0.1 and 0.3 micromol/1 microl), MK-801 (6 nmol/1 microl), pyridoxine (2 micromol/4 microl) or physiological saline (0.15 micromol/1 microl). After 30 min, MMA (0.3, 0.1 and 3 micromol/1 microl) or NaCl (6 micromol/1 microl, i.c.v.) was injected. The animals were immediately transferred to an open field and observed for the appearance of convulsions. After behavioral evaluation, glutamic acid decarboxylase (GAD) activity was determined in cerebral cortex homogenates by measuring the 14CO2 released from l-[14C]-glutamic acid. Convulsions were confirmed by electroencephalographic recording in a subset of animals. MMA caused the appearance of clonic convulsions in a dose-dependent manner and decreased GAD activity in the cerebral cortex ex vivo. GAD activity negatively correlated with duration of MMA-induced convulsions (r=-0.873, P<0.01), in an individual basis. Muscimol, baclofen, MK-801 and pyridoxine prevented MMA-induced convulsions, but only MK-801 and pyridoxine prevented MMA-induced GAD inhibition. These data suggest GABAergic mechanisms are involved in the convulsive action of MMA, and that GAD inhibition by MMA depends on the activation of NMDA receptors. While in this study we present novel data about the role of the GABAergic system in MMA-induced convulsions, the central role of NMDA receptors in the neurochemical actions of MMA is further reinforced since they seem to trigger GABAergic failure.


Assuntos
Glutamato Descarboxilase/metabolismo , Ácido Metilmalônico , Convulsões/induzido quimicamente , Convulsões/enzimologia , Ácido gama-Aminobutírico/fisiologia , Análise de Variância , Animais , Baclofeno/farmacologia , Comportamento Animal/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Eletroencefalografia/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Agonistas GABAérgicos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Muscimol/farmacologia , Ratos , Ratos Wistar , Convulsões/fisiopatologia
7.
Neuroscience ; 118(4): 1079-90, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12732252

RESUMO

Methylmalonic acidemias are metabolic disorders caused by a severe deficiency of methylmalonyl-CoA mutase activity, which are characterized by neurological dysfunction, including convulsions. It has been reported that the accumulating metabolite, L-methylmalonic acid (MMA), inhibits succinate dehydrogenase leading to ATP depletion in vitro, and that the intrastriatal injection of MMA induces convulsions through secondary NMDA receptor stimulation. In this study we investigated the effect of creatine (1.2, 3.6 and 12.0 mg/kg, (i.p.), [DOSAGE ERROR CORRECTED] succinate (1.5 micromol/striatum) and MK-801 (3 nmol/striatum) on the convulsions and on the striatal lactate increase induced by MMA (4.5 micromol/striatum) in rats. The effect of creatine on the striatal phosphocreatine content and on MMA-induced phosphocreatine depletion was also evaluated. Creatine, succinate and MK-801 pretreatment decreased the number and duration of convulsive episodes and the lactate increase elicited by MMA. Creatine, but not succinate, prevented the convulsions and the lactate increase induced by the direct stimulation of NMDA receptors. Acute creatine administration increased the total striatal phosphocreatine content and prevented MMA-induced phosphocreatine depletion. Our results suggest that MMA increases lactate production through secondary NMDA receptor activation, and it is proposed that the anticonvulsant effect of creatine against MMA-induced convulsions may be due to an increase in the phosphocreatine content available for metabolic purposes.


Assuntos
Creatina/uso terapêutico , Ácido Láctico/metabolismo , Ácido Metilmalônico/toxicidade , Convulsões/prevenção & controle , Animais , Comportamento Animal , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/lesões , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/toxicidade , Antagonistas de Aminoácidos Excitatórios , Masculino , N-Metilaspartato/toxicidade , Fosfocreatina/metabolismo , Protetores contra Radiação , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Ácido Succínico/farmacologia
8.
Brain Res ; 916(1-2): 70-5, 2001 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-11597592

RESUMO

Glutaryl-CoA dehydrogenase deficiency is an inherited neurometabolic disease complicated by precipitation of acute encephalopathic crises during a vulnerable period of brain development. These crises result in bilateral striatal damage and subsequently a dystonic dyskinetic movement disorder. In previous in vitro studies neuronal damage in this disease has been linked to an excitotoxic mechanism mediated in particular by one of the accumulating metabolites, 3-hydroxyglutaric acid. However, nothing is known about the in vivo effects of this organic acid. In the present study, we used a stereotaxic intrastriatal injection technique to investigate the behavioral and neurotoxic effects of 3-hydroxyglutaric acid exposure in rats. Here, we report that 3-hydroxyglutaric acid induced an increase in convulsion frequency and duration as determined by open field measurement. Nissl-stained coronal sections from treated rats revealed a pale lesion in the striatum following 3-hydroxyglutaric acid exposure. N-methyl-D-aspartate (NMDA) receptor blockade by MK-801 and stimulation of GABA(A) receptors by muscimol prevented the induction of convulsions and striatal damage by 3-hydroxyglutaric acid, whereas blockade of non-NMDA receptors by 6,7-dinitroquinoxaline-2,3-dione (DNQX) was not protective. We conclude that 3-hydroxyglutaric acid induces convulsions and striatal damage via initiation of an imbalance in the excitatory glutamatergic and the inhibitory GABAergic neurotransmission, resulting in an enhanced excitatory input in striatal neurons. These results support the hypothesis of NMDA receptor-mediated excitotoxic cell damage in glutaryl-CoA dehydrogenase deficiency and represent the basis for the development of new neuroprotective treatment strategies.


Assuntos
Acil Coenzima A/deficiência , Encefalopatias Metabólicas Congênitas/metabolismo , Glutaratos/toxicidade , Neostriado/efeitos dos fármacos , Neurotoxinas/toxicidade , Convulsões/induzido quimicamente , Animais , Encefalopatias Metabólicas Congênitas/patologia , Encefalopatias Metabólicas Congênitas/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Agonistas GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A , Ácido Glutâmico/metabolismo , Masculino , Neostriado/patologia , Neostriado/fisiopatologia , Ratos , Ratos Wistar , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/patologia , Convulsões/fisiopatologia
9.
Pharmacol Biochem Behav ; 68(3): 525-30, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11325408

RESUMO

The antinociceptive action of a novel pyrazole-derived compound, 3-methyl-5-hydroxy-5-trichloromethyl-1H-1-pyrazolcarboxyamide (MPCA) was evaluated using the formalin and tail-immersion tests in mice. Anti-inflammatory activity was assessed by paw plethysmometry in adult rats using the carrageenin-induced paw edema test. Subcutaneous administration of MPCA (22, 66, and 200 mg/kg) induced a dose-dependent decrease in the time spent licking during the neurogenic and inflammatory phases of the formalin test, and preadministration of naloxone (1 mg/kg, sc) did not prevent MPCA-induced (200 mg/kg, sc) antinociception. Naloxone decreased the spontaneous locomotor activity of mice, while MPCA had no effect on locomotion. In contrast, administration of the opioid antagonist caused a significant increase in the locomotor behavior of mice previously injected with MPCA. MPCA was devoid of antinociceptive action by the tail-immersion test and of anti-inflammatory activity. Moreover, MPCA had no effect on the motor performance of mice in the rotarod test. These results suggest that MPCA induces antinociception in the neurogenic and inflammatory phases of the formalin test, an effect that does not involve opioid receptors.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Pirazóis/farmacologia , Analgésicos Opioides/farmacologia , Animais , Carragenina , Edema/induzido quimicamente , Edema/patologia , Edema/prevenção & controle , Formaldeído , Imersão , Masculino , Camundongos , Morfina/farmacologia , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Medição da Dor/efeitos dos fármacos , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Wistar
10.
Brain Res ; 894(1): 68-73, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11245816

RESUMO

Neurological dysfunction is common in patients with maple syrup urine disease (MSUD). However, the mechanisms underlying the pathophysiology of this disorder are poorly known. In the present study we investigated the effect of intrastriatal administration of the alpha-keto acids accumulating in MSUD on the behavior of adult rats. After cannula placing, rats received unilateral intrastriatal injections of alpha-ketoisocaproic acid (KIC, 8 micromol), alpha-ketoisovaleric acid (KIV, 8 micromol), alpha-keto-beta-methylvaleric acid (KMV, 6 micromol) or NaCl. KIV elicited clonic convulsions in a dose-response manner, whereas KIC and KMV did not induce seizure-like behavior. Convulsions provoked by KIV were prevented by intrastriatal preadministration of muscimol (46 pmol) and MK-801 (3 nmol), but not by the preadministration of DNQX (8 nmol). These results indicate that among the keto acids that accumulate in MSUD, KIV is the only metabolite capable of causing convulsions in the present animal model and indicates that KIV is an important excitatory metabolite. Moreover, the participation of GABAergic and glutamatergic NMDA mechanisms in the KIV-induced convulsant behavior is suggested, since KIV-induced convulsions are attenuated by muscimol and MK-801. The authors suggest that KIV may play an important role in the convulsions observed in MSUD, and highlight its relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.


Assuntos
Corpo Estriado/metabolismo , Cetoácidos/efeitos adversos , Doença da Urina de Xarope de Bordo/metabolismo , Convulsões/induzido quimicamente , Animais , Corpo Estriado/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Agonistas GABAérgicos/farmacologia , Agonistas GABAérgicos/uso terapêutico , Hemiterpenos , Masculino , Ratos , Ratos Wistar , Receptores de GABA/efeitos dos fármacos , Receptores de GABA/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsões/tratamento farmacológico
11.
Neuroreport ; 10(10): 2039-43, 1999 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-10424671

RESUMO

The effects of chronic administration of alpha-tocopherol or melatonin, or acute ascorbic acid administration on the convulsant action of methylmalonic acid (MMA) were investigated in adult male rats. Animals were chronically injected with alpha-tocopherol (40 mg kg(-1), i.p.), melatonin (5 mg kg(-1), i.p.) or vehicle for 7 days. Buffered MMA (6 micromol/2 microl) or NaCl (9 micromol/2 microl) was injected intrastriatally and the animals were observed for the appearance of clonic or tonic-clonic convulsions and rotational behavior. Ascorbic acid (100 mg kg(-1), s.c.) was administered 30 min before MMA injection. Alpha-tocopherol and ascorbic acid pretreatment decreased the duration of the convulsive episodes and the rotational behavior elicited by MMA. This study provides evidence that free radical generation may participate in the convulsant effects of methylmalonic acid.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Ácido Metilmalônico/antagonistas & inibidores , Vitamina E/uso terapêutico , Análise de Variância , Animais , Convulsivantes , Masculino , Ratos , Ratos Wistar , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA