Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Neurol Phys Ther ; 45(4): 246-258, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369452

RESUMO

BACKGROUND AND PURPOSE: A crossover, double-blinded randomized controlled trial to investigate once-daily incremental vestibulo-ocular reflex (VOR) adaptation (IVA) training over 2 years in people with stable and chronic peripheral vestibular hypofunction. METHODS: Twenty-one patients with peripheral vestibular hypofunction were randomly assigned to intervention-then-control (n = 12) or control-then-intervention (n = 9) groups. The task consisted of either x1 (control) or IVA training, once daily every day for 15 minutes over 6-months, followed by a 6-month washout, then repeated for arm 2 of the crossover. Primary outcome: vestibulo-ocular reflex gain. Secondary outcomes: compensatory saccades, dynamic visual acuity, static balance, gait, and subjective symptoms. Multiple imputation was used for missing data. Between-group differences were analyzed using a linear mixed model with repeated measures. RESULTS: On average patients trained once daily 4 days per week. IVA training resulted in significantly larger VOR gain increase (active: 20.6% ± 12.08%, P = 0.006; passive: 30.6% ± 25.45%, P = 0.016) compared with x1 training (active: -2.4% ± 12.88%, P = 0.99; passive: -0.6% ± 15.31%, P = 0.68) (P < 0.001). The increased IVA gain did not significantly reduce with approximately 27% persisting over the washout period. x1 training resulted in greater reduction of compensatory saccade latency (P = 0.04) and increase in amplitude (P = 0.02) compared with IVA training. There was no difference between groups in gait and balance measures; however, only the IVA group had improved total Dizziness Handicap Inventory (P = 0.006). DISCUSSION AND CONCLUSIONS: Our results suggest IVA improves VOR gain and reduces perception of disability more than conventional x1 training. We suggest at least 4 weeks of once-daily 4 days-per-week IVA training should be part of a comprehensive vestibular rehabilitation program.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A356).


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular , Tontura , Marcha , Humanos , Vertigem
2.
Front Neurol ; 12: 658053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093406

RESUMO

People aged over 50 are the most likely to present to a physician for dizziness. It is important to identify the main cause of dizziness in order to develop the best treatment approach. Our goal was to determine the prevalence of benign paroxysmal positional vertigo (BPPV), and peripheral and central vestibular function in people that had experienced dizziness within the past year aged over 50. One hundred and ninety three community-dwelling participants aged 51-92 (68 ± 8.7 years; 117 females) were tested using the clinical and video head impulse test (cHIT and vHIT) to test high-frequency vestibular organ function; the head thrust dynamic visual acuity (htDVA) test to test high-frequency visual-stability; the dizziness handicap inventory (DHI) to measure the impact of dizziness; as well as sinusoidal and unidirectional rotational chair testing to test low- to mid-frequency peripheral and central vestibular function. From these assessments we computed the following measures: HIT gain; htDVA score; DHI score; sinusoidal (whole-body; 0.1-2 Hz with 30°/s peak-velocity) vestibulo-ocular reflex (VOR) gain and phase; transient (whole-body, 150°/s2 acceleration to 50°/s constant velocity) VOR gain and time constant; optokinetic nystagmus (OKN) gain and time constant (whole-body, 50°/s constant velocity rotation). Our study showed that BPPV, and peripheral or central vestibular hypofunction were present in 34% of participants, suggesting a vestibular cause to their dizziness. Over half (57%) of these with a likely vestibular cause had BPPV, which is more than twice the percentage reported in other dizzy clinic studies. Our findings suggest that the physical DHI score and VOR time constant were best at detecting those with non-BPPV vestibular loss, but should always be used in conjunction with cHIT or vHIT, and that the htDVA score and vHIT gain were best at detecting differences between ipsilesional and contralesional sides.

3.
J Neurol Phys Ther ; 45(2): 87-100, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33675600

RESUMO

BACKGROUND AND PURPOSE: This was a double-blinded randomized controlled study to investigate the effects of once-daily incremental vestibulo-ocular reflex (VOR) training over 1 week in people with chronic peripheral vestibular hypofunction. METHODS: A total of 24 patients with peripheral vestibular hypofunction were randomly assigned to intervention (n = 13) or control (n = 11) groups. Training consisted of either x1 (control) or incremental VOR adaptation exercises, delivered once daily for 15 minutes over 4 days in 1 week. Primary outcome: VOR gain with video-oculography. Secondary outcomes: Compensatory saccades measured using scleral search coils, dynamic visual acuity, static balance, gait, and subjective symptoms. Between-group differences were analyzed with a linear mixed-model with repeated measures. RESULTS: There was a difference in the VOR gain increase between groups (P < 0.05). The incremental training group gain increased during active (13.4% ± 16.3%) and passive (12.1% ± 19.9%) head impulse testing (P < 0.02), whereas it did not for the control group (P = 0.59). The control group had reduced compensatory saccade latency (P < 0.02). Both groups had similarly improved dynamic visual acuity scores (P < 0.05). Both groups had improved dynamic gait index scores (P < 0.002); however, only the incremental group had improved scores for the 2 walks involving head oscillations at approximately 2 Hz (horizontal: P < 0.05; vertical: P < 0.02), increased gait speed (P < 0.02), and step length (P < 0.01) during normal gait, and improved total Dizziness Handicap Inventory (P < 0.05). CONCLUSIONS: Our results suggest incremental VOR adaptation significantly improves gain, gait with head rotation, balance during gait, and symptoms in patients with chronic peripheral vestibular hypofunction more so than conventional x1 gaze-stabilizing exercises.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A336).


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular , Tontura , Terapia por Exercício , Humanos , Vertigem
4.
J Assoc Res Otolaryngol ; 22(2): 193-206, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33090309

RESUMO

One component of vestibular rehabilitation in patients with vestibulo-ocular reflex (VOR) hypofunction is gaze-stabilizing exercises that seek to increase (adapt) the VOR response. These prescribed home-based exercises are performed by the patient and thus their use/training is inherently variable. We sought to determine whether this variability affected VOR adaptation in ten healthy controls (× 2 training only) and ten patients with unilateral vestibular hypofunction (× 1 and × 2 training). During × 1 training, patients actively (self-generated, predictable) move their head sinusoidally while viewing a stationary fixation target; for × 2 training, they moved their outstretched hand anti-phase with their head rotation while attempting to view a handheld target. We defined the latter as manual × 2 training because the subject manually controls the target. In this study, head rotation frequency during training incrementally increased 0.5-2 Hz over 20 min. Active and passive (imposed, unpredictable) sinusoidal (1.3-Hz rotations) and head impulse VOR gains were measured before and after training. We show that for controls, manual × 2 training resulted in significant sinusoidal and impulse VOR adaptation of ~ 6 % and ~ 3 %, respectively, though this was ~two-thirds lower than increases after computer-controlled × 2 training (non-variable) reported in a prior study. In contrast, for patients, there was an increase in impulse but not sinusoidal VOR response after a single session of manual × 2 training. Patients had more than double the variability in VOR demand during manual × 2 training compared to controls, which could explain why adaptation was not significant in patients. Our data suggest that the clinical × 1 gaze-stabilizing exercise is a weak stimulus for VOR adaptation.


Assuntos
Adaptação Fisiológica , Modalidades de Fisioterapia , Reflexo Vestíbulo-Ocular , Fixação Ocular , Movimentos da Cabeça , Humanos
5.
Exp Brain Res ; 238(12): 2965-2972, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33070228

RESUMO

The vestibulo-ocular reflex (VOR) maintains stable vision during rapid head rotations by rotating the eyes in the opposite direction to the head. The latency between onset of the head rotation and onset of the eye rotation is 5-8 ms in healthy humans. However, VOR latency can be 3-4 times larger in patients treated with intra-tympanic gentamicin. A prior study showed that latency can be trained with head rotations at 0.2 Hz. We sought to determine how the VOR is affected when a delay between vestibular and visual stimuli is added during adaptation training with high-frequency head rotations (impulses), where the VOR is the main vision-stabilizing system. Using a variant of the incremental VOR adaptation technique, the delay between head rotation onset and movement onset of a visual target was gradually increased. With this training, the instantaneous VOR gain demand (= target/head velocity) varied from less than unity to greater than unity during each head impulse, albeit in a consistent and repeatable way. We measured the active and passive VOR gain and latency before and after VOR adaptation training in healthy normal subjects. There was no significant change in VOR latency across subjects; however, there was a significant decrease in VOR gain of - 6.0 ± 4.5%. These data suggest that during high-frequency head rotations delay/latency is interpreted as a changing instantaneous VOR gain demand. Although the gain demand in this study had a complex trajectory, adaptation was evident with the VOR seeming to use an average of the instantaneous gain demand.


Assuntos
Reflexo Vestíbulo-Ocular , Vestíbulo do Labirinto , Adaptação Fisiológica , Cabeça , Movimentos da Cabeça , Humanos
6.
J Assoc Res Otolaryngol ; 21(3): 277-285, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32232608

RESUMO

We sought to determine whether repeated vestibulo-ocular reflex (VOR) adaptation training to increase the VOR gain (eye/head velocity) had a lasting effect in normal subjects and whether there was a retinal image slip tolerance threshold for VOR adaptation. We used the unilateral incremental VOR adaptation technique and horizontal active (self-generated, predictable) head impulses as the vestibular stimulus. Both active and passive (imposed, unpredictable) head impulse VOR gains were measured before and after unilateral incremental VOR adaptation training. The adapting side was pseudo-randomized for left or right. We tested ten normal subjects over one block (10 sessions over 12 days) of VOR adaptation training and testing, immediately followed by a second block (5 sessions over 19 days) of testing only without training. Our findings show robust short-term VOR adaptation of ~ 10 % immediately after each 15-min training session, but that the daily pre-adaptation gain was most different on days 1 and 2, and for subsequent training days before saturating to ~ 5 % greater than the pre-adaptation gain on day 1. This increase was partially retained for 19 days after regular training stopped. The data suggest that stable vision in normal subjects is maintained when there is < 5 % deviation in VOR gain from the original baseline, which corresponds to < 9°/s retinal image slip. Below this threshold, there is poor adaptive drive to return the gain to its original baseline value.


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular , Retina/fisiologia , Limiar Sensorial , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
7.
Otol Neurotol ; 41(1): e118-e123, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634282

RESUMO

HYPOTHESIS: Vestibulo-ocular reflex (VOR) response measures during convergence, which are clinically important to measure peripheral vestibular organ function during rotational and translational rapid head movements, can be implemented using existing clinically available monocular video-oculography (VOG) systems. BACKGROUND: We have developed and validated a monocular VOG technique that allows for accurate measurement of the convergence angle immediately before a rapid translational or rotational head movement. METHODS: We recorded binocular eye movements while subjects performed active or passive horizontal head impulses while viewing near and far targets. We calculated the convergence angles and VOR gains using monocular and binocular methods and compared them with a geometric model. RESULTS: The monocular VOG technique resulted in convergence angle and VOR gain (eye velocity/head velocity) calculations that differed by ∼10% compared with values calculated using the binocular data. CONCLUSIONS: The monocular VOG technique can be clinically implemented using any unmodified, commercially available, monocular VOG system, provided its camera can be positioned to track either eye. Many vestibular clinics already have access to such systems. This method makes possible reliable measurement of the near-viewing horizontal angular VOR during the head impulse test, the translational VOR during the head heave test in patients, and the clinical measurement of convergence insufficiency.


Assuntos
Teste do Impulso da Cabeça/instrumentação , Teste do Impulso da Cabeça/métodos , Reflexo Vestíbulo-Ocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Neurophysiol ; 122(3): 984-993, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31339801

RESUMO

The vestibulo-ocular reflex (VOR) is the only system that maintains stable vision during rapid head rotations. The VOR gain (eye/head velocity) can be trained to increase using a vestibular-visual mismatch stimulus. We sought to determine whether low-frequency (sinusoidal) head rotation during training leads to changes in the VOR during high-frequency head rotation testing, where the VOR is more physiologically relevant. We tested eight normal subjects over three sessions. For training protocol 1, subjects performed active sinusoidal head rotations at 1.3 Hz while tracking a laser target, whose velocity incrementally increased relative to head velocity so that the VOR gain required to stabilize the target went from 1.1 to 2 over 15 min. Protocol 2 was the same as protocol 1, except that head rotations were at 0.5 Hz. For protocol 3, head rotation frequency incrementally increased from 0.5 to 2 Hz over 15 min, while the VOR gain required to stabilize the target was kept at 2. We measured the active and passive, sinusoidal (1.3Hz) and head impulse VOR gains before and after each protocol. Sinusoidal and head impulse VOR gains increased in protocols 1 and 3; however, although the sinusoidal VOR gain increase was ~20%, the related head impulse gain increase was only ~10%. Protocol 2 resulted in no-gain adaptation. These data show human VOR adaptation is frequency selective, suggesting that if one seeks to increase the higher-frequency VOR response, i.e., where it is physiologically most relevant, then higher-frequency head movements are required during training, e.g., head impulses.NEW & NOTEWORTHY This study shows that human vestibulo-ocular reflex adaptation is frequency selective at frequencies >0.3 Hz. The VOR in response to mid- (1.3 Hz) and high-frequency (impulse) head rotations were measured before and after mid-frequency sinusoidal VOR adaptation training, revealing that the mid-frequency gain change was higher than high-frequency gain change. Thus, if one seeks to increase the higher-frequency VOR response, where it is physiologically most relevant, then higher-frequency head movements are required during training.


Assuntos
Adaptação Fisiológica/fisiologia , Movimentos da Cabeça/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Percepção Visual/fisiologia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade
9.
Phys Ther ; 99(10): 1326-1333, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31197314

RESUMO

BACKGROUND AND PURPOSE: Traditional vestibular rehabilitation therapies are effective in reducing vestibular hypofunction symptoms, but changes to the vestibulo-ocular reflex (VOR) are minimal. This controlled case report describes an increase in VOR after 6 months of incremental VOR adaptation (IVA) training in a person with chronic unilateral vestibular hypofunction. CASE DESCRIPTION: The participant was a 58-year-old female with a confirmed (Neurologist P.D.C.) left vestibular lesion stable for 2 years prior to entering a clinical trial examining the effects of daily IVA training. She was evaluated monthly for self-reported symptoms (dizziness handicap inventory), VOR function (video head impulse test), and VOR behavior (Dynamic Visual Acuity test). Intervention consisted of 6 months of 15 minutes per day unassisted training using the IVA training regime with a device developed in our laboratory. The take-home device enables the VOR response to gradually normalize on the ipsilesional side via visual-vestibular mismatch training. The intervention was followed by a 6-month wash-out and 3-month control period. The control condition used the same training device set to function like standard VOR training indistinguishable to the participant. OUTCOMES: After the intervention, ipsilesional VOR function improved substantially. The VOR adapted both via a 52% increase in slow-phase response and via 43% earlier onset compensatory saccades for passive head movements. In addition, the participant reported fewer symptoms and increased participation in sports and daily activities. DISCUSSION: Here, a participant with chronic vestibular hypofunction showing improved oculomotor performance atypical for traditional vestibular rehabilitation therapies, subsequent to using the newly developed IVA technique, is presented. It is the first time to our knowledge an improvement of this magnitude has been demonstrated as well as sustained over an extended period of time.


Assuntos
Adaptação Fisiológica/fisiologia , Movimentos da Cabeça/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Movimentos Sacádicos/fisiologia , Tontura/etiologia , Equipamentos e Provisões , Feminino , Humanos , Pessoa de Meia-Idade , Modalidades de Fisioterapia , Fatores de Tempo , Interface Usuário-Computador
10.
J Neurol Phys Ther ; 43 Suppl 2: S2-S7, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30883486

RESUMO

BACKGROUND AND PURPOSE: Unilateral incremental vestibulo-ocular reflex (VOR) adaptation (IVA) increases the VOR gain (= eye/head velocity) for head rotations to one side by ∼10%. Prior IVA studies involved setting the initial VOR training gain demand at the subject's starting value (= 1 in a healthy subject), with the gain preset to increment by 0.1 every 90 seconds over 15 minutes, defined as Static IVA. We determined whether a dynamically calculated gain demand (= "actual gain" + 0.1) would result in greater adaptation, defined as Dynamic IVA. METHODS: Using a hybrid video-oculography and StableEyes training system, we measured the active (self-generated head impulse) and passive (imposed, unpredictable head impulse) VOR gain in 8 healthy subjects before and after 15 minutes of Static (ie, preset) and Dynamic IVA training consisting of active, leftward and rightward, horizontal head impulses (peak amplitude 15°, peak velocity 150°/s, and peak acceleration 3000°/s). We also measured the active VOR gain during training. RESULTS: The VOR gain increase toward the adapting side was ∼5% larger after Dynamic compared with Static IVA training (Dynamic: 13.9% ± 5.2%, Static: 9.4% ± 7.3%; P < 0.05). DISCUSSION AND CONCLUSIONS: Our data suggest that 17°/s retinal image slip (due to the 0.1 gain difference between demand and actual gain) is sufficient to drive robust VOR adaptation. The implications for vestibular rehabilitation are that Dynamic IVA training not only produces better VOR adaptation but also allows more flexible training, for example, training can be spread over several smaller time blocks, without undoing prior adaptation.


Assuntos
Adaptação Fisiológica/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
J Assoc Res Otolaryngol ; 19(6): 729-739, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30251187

RESUMO

The vestibulo-ocular reflex (VOR) is the main gaze stabilising system during rapid head movements. The VOR is highly plastic and its gain (eye/head velocity) can be increased via training that induces an incrementally increasing retinal image slip error signal to drive VOR adaptation. Using the unilateral incremental VOR adaptation technique and horizontal active head impulses as the vestibular stimulus, we sought to determine the factors important for VOR adaptation including: the total training time, ratio and number of head impulses to each side (adapting and non-adapting sides; the adapting side was pseudo-randomised left or right) and exposure time to the visual target during each head impulse. We tested 11 normal subjects, each over 5 separate sessions and training protocols. The basic training protocol (protocol one) consisted of unilateral incremental VOR adaptation training lasting 15 min with the ratio of head impulses to each side 1:1. Each protocol varied from the basic. For protocol two, the ratio of impulses were in favour of the adapting side by 2:1. For protocol three, all head impulses were towards the adapting side and the training only lasted 7.5 min. For protocol four, all impulses were towards the adapting side and lasted 15 min. For protocol five, all head impulses were to the adapting side and the exposure time to the visual target during each impulse was doubled. We measured the active and passive VOR gains before and after the training. Albeit with small sample size, our data suggest that the total training time and the visual target exposure time for each head impulse affected adaptation, whereas the total number and repetition rate of head impulses did not. These data have implications for vestibular rehabilitation, suggesting that quality and duration of VOR adaptation exercises are more important than rapid repetition of exercises.


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular , Adulto , Teste do Impulso da Cabeça , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Modalidades de Fisioterapia , Doenças Vestibulares/reabilitação
12.
J Assoc Res Otolaryngol ; 19(5): 601-610, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30120621

RESUMO

We sought to determine if separating vestibulo-ocular reflex (VOR) adaptation training into training blocks with a consolidation (rest) period in between repetitions would result in improved VOR adaptation and retention. Consolidation of motor learning refers to the brain benefitting from a rest period after prior exposure to motor training. The role of consolidation on VOR adaptation is unknown, though clinicians often recommend rest periods as a part of vestibular rehabilitation. The VOR is the main gaze stabilising system during rapid head movements. The VOR is highly plastic and its gain (eye/head velocity) can be increased via training that induces an incrementally increasing retinal image slip error signal to drive VOR adaptation. The unilateral incremental adaptation technique typically consists of one 15-min training block leading to an increase in VOR gain of ~ 10 % towards the training side. We tested nine normal subjects, each over six separate sessions/days. Three training protocols/sessions were 5 min each (1 × 5-min training) and three training protocols/sessions were 55 min each. Each 55-min protocol comprised 5-min training, 20-min rest, 5-min training, 20-min rest, 5-min training (3 × 5-min training). Active and passive VOR gains were measured before and after training. For training with consolidation breaks, VOR gain retention was measured over 1 h. The VOR gain increase after 1 × 5-min training was 3.1 ± 2.1 % (P < 0.01). One might expect that repeating this training three times would result in × 3 total increase of 9.3 %; however, the gain increase after 3 × 5-min training was only 7.1 ± 2.8 % (P < 0.001), suggesting that consolidation did not improve VOR adaptation for our protocols. However, retention was improved by the addition of consolidation breaks, i.e. gains did not decrease over 1 h (P = 0.43). These data suggest that for optimal retention VOR adaptation exercises should be performed over shorter repeated blocks.


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular/fisiologia , Adulto , Humanos , Fatores de Tempo
13.
Front Neurol ; 9: 507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013507

RESUMO

Computerized posturography is most often performed with a force plate measuring center-of-pressure (COP). COP is related to postural control actions but does not monitor the outcome of those actions, i.e., center-of-mass (COM) stability. For a more complete analysis of postural control COM should also be measured; however, existing motion tracking technology is prohibitively expensive and overcomplicated for routine use. The objective of this work was to create and validate an inexpensive and convenient stereo vision system which measured a trunk-fixed target's 3D position and orientation relating to COM. The stereo vision system would be complementary to typical force plate methods providing precise 6D position measurements under laboratory conditions. The developed system's measurement accuracy was worst in the inferior-superior axis (depth) and pitch coordinates with accuracy measures 1.1 mm and 0.8°, respectively. The system's precision was worst in the depth and roll coordinates with values 0.1 mm and 0.15°, respectively. Computer modeling successfully predicted this precision with 11.3% mean error. Correlation between in vivo target position (TP) and COP was above 0.73 with COP generally demonstrating larger excursions oscillating around TP. Power spectral analysis of TP revealed 99% of the signal was bound below 1.1 Hz matching expectations for COM. The new complementary measurement method enables identification of postural control strategies and as a result more complete analysis. Stereo vision is a useful complement to typical force plate equipment. The system presented here is inexpensive and convenient demonstrating potential for routine use in clinic and research. In order to use this system in clinic, future work is required in interpretation of this system's data and normal reference values must be established across gender and age in a healthy population followed by values from patients with different pathologies.

14.
J Neurophysiol ; 120(4): 1496-1504, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29947586

RESUMO

The healthy vestibulo-ocular reflex (VOR) ensures that images remain on the fovea of the retina during head rotation to maintain stable vision. VOR behavior can be measured as a summation of linear and nonlinear properties although it is unknown whether asymmetric VOR adaptation can be performed synchronously in humans. The purpose of the present study is twofold. First, examine whether the right and left VOR gains can be synchronously adapted in opposing directions. Second, to investigate whether the adaptation context transfers between both sides. Three separate VOR adaptation sessions were randomized such that the VOR was adapted Up-bilaterally, Down-bilaterally, or Mixed (one side up, opposite side down). Ten healthy subjects completed the study. Subjects were tested while seated upright, 1 meter in front of a wall in complete dark. Each subject made active (self-generated) head impulse rotations for 15 min while viewing a gradually increasing amount of retinal slip. VOR training demand changed by 10% every 90 s. The VOR changed significantly for all training conditions. No significant differences in the magnitude of VOR gain changes between training conditions were found. The human VOR can be simultaneously driven in opposite directions. The similar magnitude of VOR gain changes across training conditions suggests functionally independent VOR circuits for each side of head rotation that mediate simultaneous and opposing VOR adaptations. NEW & NOTEWORTHY Our results indicate that humans have the adaptive capacity for concurrent and opposing directions of vestibulo-ocular reflex (VOR) motor learning. Context specificity of VOR adaptation is dependent on the error signal being unilateral or bilateral, which we illustrate via a lack of VOR gain transfer using unique adaptive demands.


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular , Adulto , Feminino , Movimentos da Cabeça , Humanos , Aprendizagem , Masculino , Percepção Visual
15.
J Assoc Res Otolaryngol ; 19(3): 261-271, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29464411

RESUMO

The vestibulo-ocular reflex (VOR) is the main vision-stabilising system during rapid head movements in humans. A visual-vestibular mismatch stimulus can be used to train or adapt the VOR response because it induces a retinal image slip error signal that drives VOR motor learning. The training context has been shown to affect VOR adaptation. We sought to determine whether active (self-generated) versus passive (externally imposed) head rotation vestibular training would differentially affect adaptation and short-term retention of the active and passive VOR responses. Ten subjects were tested, each over six separate 1.5-h sessions. We compared active versus passive head impulse (transient, rapid head rotations with peak velocity ~ 150 °/s) VOR adaptation training lasting 15 min with the VOR gain challenged to increment, starting at unity, by 0.1 every 90 s towards one side only (this adapting side was randomised to be either left or right). The VOR response was tested/measured in darkness at 10-min intervals, 20-min intervals, and two single 60-min interval sessions for 1 h post-training. The training was active or passive for the 10- and 20-min interval sessions, but only active for the two single 60-min interval sessions. The mean VOR response increase due to training was ~ 10 % towards the adapting side versus ~2 % towards the non-adapting side. There was no difference in VOR adaptation and retention between active and passive VOR training. The only factor to affect retention was exposure to a de-adaptation stimulus. These data suggest that active VOR adaptation training can be used to optimally adapt the passive VOR and that adaptation is completely retained over 1 h as long as there is no visual feedback signal driving de-adaptation.


Assuntos
Adaptação Fisiológica , Reflexo Vestíbulo-Ocular , Adulto , Movimentos da Cabeça , Humanos , Pessoa de Meia-Idade , Adulto Jovem
16.
J Assoc Res Otolaryngol ; 19(1): 113-122, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29110135

RESUMO

The vestibulo-ocular reflex (VOR) is the main retinal image stabilising mechanism during rapid head movement. When the VOR does not stabilise the world or target image on the retina, retinal image slip occurs generating an error signal that drives the VOR response to increase or decrease until image slip is minimised, i.e. VOR adaptation occurs. Visual target contrast affects the human smooth pursuit and optokinetic reflex responses. We sought to determine if contrast also affected VOR adaptation. We tested 12 normal subjects, each over 16 separate sessions. For sessions 1-14, the ambient light level (lx) during adaptation training was as follows: dark, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 2, 8, 16, 32, 64, 128 and 255 lx (light level for a typical room). For sessions 15-16, the laser target power (related to brightness) was halved with ambient light at 0 and 0.1 lx. The adaptation training lasted 15 min and consisted of left/right active head impulses. The VOR gain was challenged to increment, starting at unity, by 0.1 every 90 s for rotations to the designated adapting side and fixed at unity towards the non-adapting side. We measured active and passive VOR gains before and after adaptation training. We found that for both the active and passive VOR, there was a significant increase in gain only towards the adapting side due to training at contrast level 1.5 k and above (2 lx and below). At contrast level 261 and below (16 lx and above), adaptation training resulted in no difference between adapting and non-adapting side gains. Our modelling suggests that a contrast threshold of ~ 1000, which is 60 times higher than that provided by typical room lighting, must be surpassed for robust active and passive VOR adaptation. Our findings suggest contrast is an important factor for adaptation, which has implication for rehabilitation programs.


Assuntos
Adaptação Fisiológica/fisiologia , Reflexo Vestíbulo-Ocular/fisiologia , Percepção Visual , Adulto , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA