Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Toxics ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787131

RESUMO

The presence of plastic particles in oceans has been recognized as a major environmental concern. The decrease in particle size increases their ability to directly interact with biota, with particles in the nanometer size range (nanoplastics-NPs) displaying a higher ability to penetrate biological membranes, which increases with the decrease in particle size. This study aimed to evaluate the role of life stages in the effects of poly(methyl)methacrylate (PMMA) NPs on the polychaete Hediste diversicolor, a key species in the marine food web and nutrient cycle. Thus, behavioral (burrowing activity in clean and spiked sediment) and biochemical endpoints (neurotransmission, energy reserves, antioxidant defenses, and oxidative damage) were assessed in juvenile and adult organisms after 10 days of exposure to spiked sediment (between 0.5 and 128 mg PMMA NPs/Kg sediment). Overall, the results show that H. diversicolor is sensitive to the presence of PMMA NPs. In juveniles, exposed organisms took longer to burrow in sediment, with significant differences from the controls being observed at all tested concentrations when the test was performed with clean sediment, whereas in PMMA NP-spiked sediment, effects were only found at the concentrations 8, 32, and 128 mg PMMA NPs/Kg sediment. Adults displayed lower sensitivity, with differences to controls being found, for both sediment types, at 8, 32, and 128 mg PMMA NPs/Kg sediment. In terms of Acetylcholinesterase, used as a marker of effects on neurotransmission, juveniles and adults displayed opposite trends, with exposed juveniles displaying increased activity (suggesting apoptosis), whereas in adults, overall decreased activity was found. Energy-related parameters revealed a generally similar pattern (increase in exposed organisms) and higher sensitivity in juveniles (significant effects even at the lower concentrations). NPs also demonstrated the ability to increase antioxidant defenses (higher in juveniles), with oxidative damage only being found in terms of protein carbonylation (all tested NPs conditions) in juveniles. Overall, the data reveal the potential of PMMA NPs to affect behavior and induce toxic effects in H. diversicolor, with greater effects in juveniles.

2.
Antioxidants (Basel) ; 13(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38790670

RESUMO

Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with Rhizobium displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed Rhizobium cells to ascertain whether Rhizobium's observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems.

3.
Aquat Toxicol ; 265: 106743, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931377

RESUMO

Plastics, particularly microplastics (MPs) and nanoplastics (NPs), have been regarded as pollutants of emerging concern due to their effects on organisms and ecosystems, especially considering marine environments. However, in terms of NPs, there is still a knowledge gap regarding the effects of size and polymer on marine invertebrates, such as benthic organisms. Therefore, this study aimed to understand, regarding behavioural, physiological, and biochemical endpoints (neurotransmission, energy metabolism, antioxidant status, and oxidative damage), the effects of 50 nm waterborne polymethylmethacrylate (PMMA) NPs (0.5 to 500 µg/L) on the marine benthic polychaete Hediste diversicolor, a key species in estuarine and coastal ecosystems. Results demonstrated that worms exposed to PMMA NPs had a shorter burrowing time than control organisms. Nevertheless, worms exposed to PMMA NPs (0.5 and 500 µg/L) decreased cholinesterase activity. Energy metabolism was decreased at 50 and 500 µg/L, and glycogen content decreased at all concentrations of PMMA NPs. Enzymes related to the antioxidant defence system (superoxide dismutase and glutathione peroxidase) displayed increased activities in H. diversicolor specimens exposed to concentrations between 0.5 and 500 µg/L, which led to no damage at the cell membrane and protein levels. In this study, polychaetes also displayed a lower regenerative capacity when exposed to PMMA NPs. Overall, the data obtained in this study emphasize the potential consequences of PMMA NPs to benthic worms, particularly between 0.5 and 50 µg/L, with polychaetes exposed to 50 µg/L being the most impacted by the analysed NPs. However, since sediments are considered to be sinks and sources of plastics, further studies are needed to better understand the impacts of different sizes and polymers on marine organisms, particularly benthic species.


Assuntos
Poliquetos , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Polimetil Metacrilato/toxicidade , Polimetil Metacrilato/metabolismo , Microplásticos/metabolismo , Plásticos , Ecossistema , Poluentes Químicos da Água/toxicidade
4.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375132

RESUMO

Graphene oxide (GO) properties make it a promising material for graphene-based applications in areas such as biomedicine, agriculture, and the environment. Thus, its production is expected to increase, reaching hundreds of tons every year. One GO final destination is freshwater bodies, possibly affecting the communities of these systems. To clarify the effect that GO may impose in freshwater communities, a fluvial biofilm scraped from submerged river stones was exposed to a range (0.1 to 20 mg/L) of GO concentrations during 96 h. With this approach, we hypothesized that GO can: (1) cause mechanical damage and morphological changes in cell biofilms; (2) interfere with the absorption of light by biofilms; (3) and generate oxidative stress, causing oxidative damage and inducing biochemical and physiological alterations. Our results showed that GO did not inflict mechanical damage. Instead, a positive effect is proposed, linked to the ability of GO to bind cations and increase the micronutrient availability to biofilms. High concentrations of GO increased photosynthetic pigment (chlorophyll a, b, and c, and carotenoids) content as a strategy to capture the available light more effectively as a response to the shading effect. A significant increase in the enzymatic (SOD and GSTs activity) and low molecular weight (lipids and carotenoids) antioxidant response was observed, that efficiently reduced oxidative stress effects, reducing the level of peroxidation, and preserving membrane integrity. Being complex entities, biofilms are more similar to environmental communities and may provide more accurate information to evaluate the impact of GO in aquatic systems.


Assuntos
Grafite , Grafite/farmacologia , Clorofila A/farmacologia , Óxidos/farmacologia , Rios , Biofilmes , Carotenoides/farmacologia
5.
Antioxidants (Basel) ; 12(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36830045

RESUMO

Salinity constitutes a major abiotic factor that negatively affects crop productivity. Inoculation with plant growth-promoting bacteria (PGPB) is proven to increase plant tolerance to abiotic stresses and enhance plant growth, development and productivity. The present study aims to increase the resilience of crops to salinity using bacteria from the microbiome of plants growing in saline environments. For that, the halotolerance of bacteria present in the roots of natural plants growing on Sal Island, which is characterized by its arid environment and maritime influence, was determined, with some strains having extreme halotolerance. Their ability to produce plant growth-promoting traits was evaluated, with most strains increasing indole acetic acid (26-418%), siderophore (>300%) and alginate (2-66%) production and phosphate solubilization (13-100%) under salt stress. The strains evidencing the best performance were inoculated in maize (Zea mays L.) plants and their influence on plant growth and biochemical status was evaluated. Results evidenced bacterial ability to especially increase proline (55-191%), whose osmotic, antioxidant and protein-protecting properties reduced protein damage in salt-stressed maize plants, evidencing the potential of PGPB to reduce the impact of salinity on crops. Enhanced nutrition, phytohormone production and osmolyte synthesis along with antioxidant response all contribute to increasing plant tolerance to salt stress.

6.
Mar Pollut Bull ; 186: 114393, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463719

RESUMO

The impact of hazardous materials, such as Hg, on life is far from being understood and due to the high number of polluted sites it has generated great concern. A biochemical and lipidomic approach was used to assess the effects of Hg on the saltmarsh halophyte Halimione portulacoides. Plants were collected at two sites of a Hg contaminated saltmarsh. Hg accumulation and distribution in the plant, biochemical parameters (antioxidant and metabolic) and lipid profiles were determined and compared between plant organs and sites (s1 and s2). Hg did not induce antioxidant enzyme activity. Lipid profiles changed under Hg exposure, especially in leaves, decreasing the unsaturation level, the membrane fluidity and stability, and evidencing that membrane lipid remodeling influences plant tolerance to Hg. This knowledge can help select the most appropriate methodologies for the restoration of Hg polluted hotspots, curtailing a serious environmental problem threatening saltmarshes.


Assuntos
Amaranthaceae , Chenopodiaceae , Mercúrio , Mercúrio/metabolismo , Antioxidantes/metabolismo , Amaranthaceae/metabolismo , Lipidômica , Lipídeos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36497501

RESUMO

Contamination with Arsenic, a toxic metalloid, is increasing in the marine environment. Additionally, global warming can alter metalloids toxicity. Polychaetes are key species in marine environments. By mobilizing sediments, they play vital roles in nutrient and element (including contaminants) cycles. Most studies with marine invertebrates focus on the effects of metalloids on either adults or larvae. Here, we bring information on the effects of temperature increase and arsenic contamination on the polychaete Hediste diversicolor in different growth stages and water temperatures. Feeding activity and biochemical responses-cholinesterase activity, indicators of cell damage, antioxidant and biotransformation enzymes and metabolic capacity-were evaluated. Temperature rise combined with As imposed alterations on feeding activity and biochemical endpoints at different growth stages. Small organisms have their antioxidant enzymes increased, avoiding lipid damage. However, larger organisms are the most affected class due to the inhibition of superoxide dismutase, which results in protein damage. Oxidative damage was observed on smaller and larger organisms exposed to As and temperature of 21 °C, demonstrating higher sensibility to the combination of temperature rise and As. The observed alterations may have ecological consequences, affecting the cycle of nutrients, sediment oxygenation and the food chain that depends on the bioturbation of this polychaete.


Assuntos
Arsênio , Poliquetos , Poluentes Químicos da Água , Animais , Arsênio/análise , Poluentes Químicos da Água/metabolismo , Poliquetos/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo
8.
Antioxidants (Basel) ; 11(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421489

RESUMO

Plant roots are colonized by rhizobacteria, and these soil microorganisms can not only stimulate plant growth but also increase tolerance to stress through the production of volatile organic compounds. However, little is known about the effect that these plant beneficial volatiles may have on bacteria. In this study, the effects on growth and oxidative status of different concentrations of three volatiles already reported to have a positive influence on plant growth (2-butanone, 3-methyl-1-butanol, and 2,3-butanediol) were determined in A. thaliana and Rhizobium sp. strain E20-8 via airborne exposure in the presence and absence of Cd. It was expected to ascertain if the plant and the bacterium are influenced in the same way by the volatiles, and if exposure to stress (Cd) shifts the effects of volatiles on plants and bacteria. Results showed the antioxidant activity of the volatiles protecting the plant cell metabolism from Cd toxicity and increasing plant tolerance to Cd. Effects on bacteria were less positive. The two alcohols (3-methyl-1-butanol and 2,3-butanediol) increased Cd toxicity, and the ketone (2-butanone) was able to protect Rhizobium from Cd stress, constituting an alternative way to protect soil bacterial communities from stress. The application of 2-butanone thus emerges as an alternative way to increase crop production and crop resilience to stress in a more sustainable way, either directly or through the enhancement of PGPR activity.

9.
Plants (Basel) ; 11(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365367

RESUMO

Climate change and anthropogenic activities are responsible for extensive crop yield losses, with negative impact on global agricultural production. The occurrence of extreme weather events such as drought is a big challenge for agriculture, negatively impacting crops. Thus, methodologies reducing crop dependence on water will be a great advantage. Plant roots are colonized by soil bacteria, that can establish beneficial associations with plants, increasing crop productivity and plant tolerance to abiotic stresses. The aim of this study was to promote plant growth and to increase crop tolerance to drought by inoculation with osmotolerant bacterial strains. For that, bacteria were isolated from plants growing in Sal Island (Cape Verde) and identified. The osmotolerance and plant-growth promotion (PGP) abilities of the strains were determined. A maize seed cultivar tolerant to drought was inoculated with the strains evidencing best PGP capacity and osmo-tolerance. Results evidenced the ability of some bacterial strains increasing the development and inducing osmotolerance in plants. These results evidence the potential of osmotolerant bacteria to further increase the level of tolerance of maize varieties tolerant to drought, decreasing the dependence of this crop on irrigation, and open new perspectives to growth maize in drought affected areas and to use water more efficiently.

10.
Biology (Basel) ; 11(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36009780

RESUMO

Polychaetes are known to be good bioindicators of marine pollution, such as inorganic contamination. Major and trace elements are commonly present in sediment and may be accumulated by polychaetes such as the tubiculous Diopatra neapolitana. In this study, D. neapolitana individuals were collected in the autumn, winter, spring, and summer of 2018/2019 from the Ria de Aveiro lagoon (western Portugal) to understand how seasonality influences element accumulation. The impact of the interaction of seasonality and elements on oxidative status, energy metabolism, and oxidative damage was also assessed. The obtained results showed that the activity of the antioxidant enzymes catalase, glutathione S-transferases, and non-protein thiol levels were higher in summer and that superoxide dismutase, lipid peroxidation, and electron transport system activity increased in winter. The lowest glycogen levels were observed during spring, and protein carbonylation was the highest during autumn. These results could mainly be related to high temperatures and the bioaccumulation of Al, As, Mn, and Zn. Energy-related parameters increased during spring and autumn, mainly due to the bioaccumulation of the same elements during spring and summer. Lipid damage was higher during winter, which was mainly due to salinity and temperature decreases. Overall, this study demonstrates that seasonality plays a role in element accumulation by polychaetes and that both impact the oxidative status of D. neapolitana.

11.
Nanotoxicology ; 16(5): 549-565, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35997812

RESUMO

Climate change events, such as drought, are increasing and soil bacteria can be severely affected. Moreover, the accumulation of emerging pollutants is expected to rapidly increase, and their impact on soil organisms, their interactions, and the services they provide is poorly known. The use of graphene oxide (GO) has been increasing due to its enormous potential for application in several areas and it is expected that concentration in soil will increase in the future, potentially causing disturbances in soil microorganisms not yet identified.Here we show the effects that GO nanosheets can cause on soil bacteria, in particular those that promote plant growth, in control and 10% polyethylene glycol (PEG) conditions. Low concentrations of GO nanosheets did not affect the growth of Rhizobium strain E20-8, but under osmotic stress (PEG) GO decreased bacterial growth even at lower concentrations. GO caused oxidative stress, with antioxidant mechanisms being induced to restrain damage, effectively at lower concentrations, but less effective at higher concentrations, and oxidative damage overcame. Under osmotic stress, alginate and glycine betaine osmoregulated the bacteria. Simultaneous exposure to PEG and GO induced oxidative damage. Plant growth promotion traits (indole acetic acid and siderophores production) were increased by osmotic stress and GO did not disturb these abilities. In the context of climate change, our findings might be relevant as they can form the premises for the implementation of crop production methodologies adapted to the new prevailing conditions, which include the presence of nanoparticles in the soil and more frequent and severe drought.


Assuntos
Rhizobium , Rhizobium/metabolismo , Pressão Osmótica , Antioxidantes/metabolismo , Solo , Raízes de Plantas/metabolismo , Bactérias/metabolismo , Estresse Oxidativo
12.
Environ Res ; 214(Pt 2): 113764, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35803342

RESUMO

Plastic pollution is a serious problem in aquatic systems throughout the world. Despite the increasing number of studies addressing the impact of macro- and microplastics on biota, there is still a significant knowledge gap regarding the effects of nanoplastics alone and in combination with other contaminants. Among the aquatic contaminants that may interact with nanoplastics is arsenic (As), a metalloid found in estuarine and coastal ecosystems, pernicious to benthic organisms. This study aimed to understand how a parental pre-exposure to 100 nm polystyrene nanoplastics (PS NPs) would influence the response of Hediste diversicolor to exposure to arsenic in terms of behaviour, neurotransmission, antioxidant defences and oxidative damage, and energy metabolism. The obtained data revealed an increase in burrowing time and a significant inhibition in cholinesterase activity in all polychaetes exposed to As, regardless of the pre-exposure to PS NPs. Oxidative status was altered particularly in parentally exposed organisms, with damage detected in terms of lipid peroxidation at 50 µg/L and protein carbonylation at 50 and 250 µg As/L exposed organisms when compared to control. Overall, data shows that parental pre-exposure to plastics influences the response of aquatic organisms, increasing their susceptibility to other contaminants. Thus, more studies should be performed with other environmental contaminants, to better understand the potential increased risk associated with the presence of nanoplastics to aquatic ecosystems.


Assuntos
Arsênio , Poliquetos , Poluentes Químicos da Água , Animais , Arsênio/toxicidade , Ecossistema , Microplásticos , Plásticos/toxicidade , Poliestirenos , Poluentes Químicos da Água/análise
13.
Environ Pollut ; 299: 118869, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063544

RESUMO

Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources - soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.


Assuntos
Grafite , Poliquetos , Poluentes Químicos da Água , Animais , Grafite/metabolismo , Grafite/toxicidade , Peroxidação de Lipídeos , Poliquetos/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Microorganisms ; 11(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36677349

RESUMO

Current agricultural methodologies are vulnerable to erratic climate and are dependent on cost-intensive fertilization to ensure high yields. Sustainable practices should be pursued to ensure food security. Phaseolus vulgaris L. is one of the most produced legumes worldwide and may be an alternative to reduce the environmental impact of meat production as a reliable source of high-quality protein. Plant growth-promoting rhizobacteria (PGPR) are emerging as a sustainable option to increase agricultural production. To understand the dynamics between plants and microorganisms, the culturable microbiota of bean roots was isolated and identified at distinct stages of plant development (early and late vegetative growth, flowering, and pod) and root compartments (rhizoplane, endosphere, and nodules). Diversity and abundance of bacteria associated with root compartments differed throughout the plant life cycle. Bacterial plant growth promotion (PGP) and protection abilities (indole-3-acetic acid production, siderophore synthesis, and antifungal activity) were assessed and associated with plant phenology, demonstrating that among the bacteria associated with plant roots, several strains had an active role in the response to plant biological needs at each stage. Several strains stood out for their ability to display one or more PGP traits, being excellent candidates for efficient stage-specific biostimulants for application in precision agriculture.

15.
Sci Total Environ ; 800: 149478, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34391142

RESUMO

Volatile sulfur compounds (VSCs) have been reported to be produced by many bacterial species. Depending on the compound, they can negatively influence some organisms (fungi, nematodes and insects) or promote plant growth. Some of these compounds have also been hypothesized to play a role in bacterial response to cadmium (Cd) induced stress. This study aimed to assess the potential effects of four VSCs (dimethyl sulfide - DMS, dimethyl disulfide - DMDS, dimethyl trisulfide - DMTS and methyl thioacetate - MTA) on the growth and oxidative status of Rhizobium sp. strain E20-8 via airborne exposure, in order to test the hypothesis that these volatile compounds can influence growth and tolerance to cadmium. Our results show that, overall, the tested compounds triggered similar antioxidant mechanisms in Rhizobium in the presence of Cd. The protective effect at the membrane level by DMDS and DMTS particularly demonstrates the antioxidant effect of these volatiles, with reductions of up to 50% (DMS) and 80% (DMTS) in lipid peroxidation levels. Due to the volatile nature of these compounds, the low concentrations tested (1 nM to 100 mM), and considering that they are released by bacteria and other organisms such as plants, it is possible that these effects also occur in the soil ecosystem.


Assuntos
Rhizobium leguminosarum , Compostos Orgânicos Voláteis , Cádmio/toxicidade , Ecossistema , Estresse Oxidativo , Compostos de Enxofre , Compostos Orgânicos Voláteis/toxicidade
16.
Nanomaterials (Basel) ; 11(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34443810

RESUMO

Mercury (Hg) has been increasing in waters, sediments, soils and air, as a result of natural events and anthropogenic activities. In aquatic environments, especially marine systems (estuaries and lagoons), Hg is easily bioavailable and accumulated by aquatic wildlife, namely bivalves, due to their lifestyle characteristics (sedentary and filter-feeding behavior). In recent years, different approaches have been developed with the objective of removing metal(loid)s from the water, including the employment of nanomaterials. However, coastal systems and marine organisms are not exclusively challenged by pollutants but also by climate changes such as progressive temperature increment. Therefore, the present study aimed to (i) evaluate the toxicity of remediated seawater, previously contaminated by Hg (50 mg/L) and decontaminated by the use of graphene-based nanomaterials (graphene oxide (GO) functionalized with polyethyleneimine, 10 mg/L), towards the mussel Mytilus galloprovincialis; (ii) assess the influence of temperature on the toxicity of decontaminated seawater. For this, alterations observed in mussels' metabolic capacity, oxidative and neurotoxic status, as well as histopathological injuries in gills and digestive tubules were measured. This study demonstrated that mussels exposed to Hg contaminated seawater presented higher impacts than organisms under remediated seawater. When comparing the impacts at 21 °C (present study) and 17 °C (previously published data), organisms exposed to remediated seawater at a higher temperature presented higher injuries than organisms at 17 °C. These results indicate that predicted warming conditions may negatively affect effective remediation processes, with the increasing of temperature being responsible for changes in organisms' sensitivity to pollutants or increasing pollutants toxicity.

17.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803657

RESUMO

Drought is a limiting factor for agricultural productivity. Climate change threatens to expand the areas of the globe subjected to drought, as well as to increase the severity and duration of water shortage. Plant growth-promoting bacteria (PGPB) are widely studied and applied as biostimulants to increase plant production and to enhance tolerance to abiotic and biotic constraints. Besides PGPB, studies on the potential of nanoparticles to be used as biostimulants are also thriving. However, many studies report toxicity of tested nanoparticles in bacteria and plants in laboratory conditions, but few studies have reported effects of nanoparticles towards bacterial cells and communities in the soil. The combined application of nanoparticles and PGPB as biostimulant formulations are poorly explored and it is important to unravel the potentialities of their combined application as a way to potentiate food production. In this study, Rhizobium sp. E20-8 and graphene oxide (GO) nanosheets were applied on container-grown maize seedlings in watered and drought conditions. Bacterial survival, seedling growth (dry weight), and biochemical endpoints (photosynthetic pigments, soluble and insoluble carbohydrates, proline, lipid peroxidation, protein, electron transport system, and superoxide dismutase) were evaluated. Results showed that the simultaneous exposure to GO and Rhizobium sp. E20-8 was able to alleviate the stress induced by drought on maize seedlings through osmotic and antioxidant protection by GO and mitigation of GO effects on the plant's biochemistry by Rhizobium sp. E20-8. These results constitute a new lead on the development of biostimulant formulations to improve plant performance and increase food production in water-limited conditions.

18.
Aquat Toxicol ; 230: 105673, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33221665

RESUMO

The negative effects induced in marine organisms by Climate Change related abiotic factors consequences, namely ocean warming, are well-known. However, few works studied the combined impacts of ocean warming and contaminants, as pharmaceutical drugs. Carbamazepine (CBZ) and cetirizine (CTZ) occur in the marine environment, showing negative effects in marine organisms. This study aimed to evaluate the impacts of ocean warming on the effects of CBZ and CTZ, when acting individually and combined (drug vs drug), in the edible clam Ruditapes philippinarum. For that, drugs concentration, bioconcentration factors and biochemical parameters, related with clam's metabolic capacity and oxidative stress, were evaluated after 28 days exposure to environmentally relevant scenarios of these stressors. The results showed limited impacts of the drugs (single and combined) at control and warming condition. Indeed, it appeared that warming improved the oxidative status of contaminated clams (higher reduced to oxidized glutathione ratio, lower lipid peroxidation and protein carbonylation levels), especially when both drugs were combined. This may result from clam's defence mechanisms activation and reduced metabolic capacity that, respectively, increased elimination and limited production of reactive oxygen species. At low stress levels, defence mechanisms were not activated which resulted into oxidative stress. The present findings highlighted that under higher stress levels clams may be able to activate defence strategies that were sufficient to avoid cellular damages and loss of redox homeostasis. Nevertheless, low concentrations were tested in the present study and the observed responses may greatly change under increased pollution levels or temperatures. Further research on this topic is needed since marine heat waves are increasing in frequency and intensity and pollution levels of some pharmaceuticals are also increasing in coastal systems.


Assuntos
Anticonvulsivantes/toxicidade , Bivalves/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Água do Mar/química , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Bivalves/metabolismo , Mudança Climática , Interações Medicamentosas , Modelos Teóricos , Oceanos e Mares , Temperatura
19.
Microorganisms ; 8(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664270

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) is a phytopathogen responsible for bacterial canker in kiwifruit plants and can be disseminated through pollen. This study aimed to evaluate the effectiveness of antimicrobial photodynamic therapy (aPDT) in the inactivation of Psa on kiwifruit pollen using New Methylene Blue (NMB) and Methylene Blue (MB) in the presence/absence of potassium iodide (KI). Pollen germination assays were also performed to evaluate if it was affected by aPDT. Higher reduction of Psa was achieved using NMB (5.0 µM) combined with KI (100 mM) in vitro (ca. 8 log CFU mL-1 after 90 min of irradiation), while NMB alone promoted a lower reduction (3.7 log CFU mL-1). The most efficient NMB concentration with KI was used to study the photodynamic efficiency of MB (5.0 µM). MB with KI photo-inactivated Psa more efficiently than NMB, causing the same bacterial reduction (ca. 8 log CFU mL-1) in half the irradiation time (45 min). Therefore, MB was selected for the subsequent ex vivo aPDT assays in pollen. Almost all the Psa cells added artificially to the pollen (3.2 log CFU mL-1) were photo-inactivated (3.1 log CFU mL-1), whereas aPDT had a low effect on pollen natural microorganisms. When KI was added, a significant increase in aPDT effectiveness was observed (4.5 log CFU mL-1). No negative effects were observed in the pollen germination after aPDT. The results show aPDT is an effective and safe method to Psa inactivation on kiwifruit pollen, and MB use is a promising alternative in the control of Psa transmission.

20.
Sci Total Environ ; 723: 137798, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32392676

RESUMO

In the last few years the use of nanoparticles (NPs) such as the manganese spinel ferrite (MnFe2O4) has been increasing, with a vast variety of applications including water remediation from pollutants as metal(oid)s. Although an increasing number of studies already demonstrated the potential toxicity of NPs towards aquatic systems and inhabiting organisms, there is still scarce information on the potential hazard of the remediated water using NPs. The present study aimed to evaluate the ecotoxicological safety of Pb contaminated seawater remediated with MnFe2O4, NPs, assessing the toxicity induced in mussels Mytilus galloprovincialis exposed to contaminated seawater and to water that was remediated using MnFe2O4, NPs. The results obtained demonstrated that seawater contaminated with Pb, NPs or the mixture of both (Pb + NPs) induced higher toxicity in mussels compared to organisms exposed to Pb, NPs and Pb + NPs after the remediation process. In particular, higher metabolic depression, oxidative stress and neurotoxicity were observed in mussels exposed to contaminated seawater in comparison to mussels exposed to remediated seawater.


Assuntos
Mytilus , Nanopartículas , Poluentes Químicos da Água/análise , Óxido de Alumínio , Animais , Compostos Férricos , Óxido de Magnésio , Manganês , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA