Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 246: 120691, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857005

RESUMO

Anthropogenic activities have led to excessive loading of phosphorus and nitrogen into water bodies, leading to eutrophication and promoting the growth of cyanobacteria, posing a threat to the health of humans and aquatic animals. Techniques such as Floc & Lock have been developed to mitigate eutrophication by reducing phosphorus concentrations in water and preventing algal blooms. However, little attention has been given to the impact of phosphorus resuspension by sediment-associated organisms such as benthic macroinvertebrates, on the effectiveness of this technique. Here, we experimentally evaluated whether the presence of snails Melanoides tuberculata (Müller, 1774) and larvae of Chironomus sancticaroli (Strixino and Strixino, 1981) affects the efficiency of the Floc & Lock technique. Snails and chironomid larvae are benthic macroinvertebrates commonly found in high abundance in eutrophic reservoirs. Specifically, we tested the hypotheses that (i) the presence of benthic macroinvertebrates reduces the efficiency of coagulants and clays in removing phosphorus and algal biomass from the water column, and (ii) this effect is species-dependent, as some organisms such as the snails, revolve the substrate and resuspend sedimented particles, while other ones, such as chironomid larvae, aid in the removal of phosphorus from the water column by depositing them in the sediment. Our findings revealed that the impact of benthic macroinvertebrates on the effectiveness of the Floc & Lock technique is species-dependent. Chironomid larvae positively influenced the efficiency of the technique by aiding in the removal of total phosphorus, soluble reactive phosphorus, and algal biomass from the water column, depositing them in the sediment. In contrast, the presence of snails had the opposite effect, resulting in increased phosphorus concentration and algal biomass in the water. Surprisingly, the snails consumed the flocs formed by the coagulant and clay within a short time interval of 72 h, raising concerns due to the presence of toxic cyanobacterial biomass in these flocs. Our study emphasizes the importance of considering benthic macroinvertebrates and their impact on the effectiveness of eutrophication management techniques.


Assuntos
Cianobactérias , Eutrofização , Animais , Humanos , Biomassa , Água , Fósforo , Lagos/química
2.
Sci Total Environ ; 769: 144524, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482541

RESUMO

Non-native species are considered a major global threat to biodiversity, and their expansion to new ecosystems has recently increased. However, the effect of non-native species on ecosystem functioning is poorly understood, especially in hyperdiverse tropical ecosystems of which long-term studies are scarce. We analyzed the relationship between richness, biomass, and ß-diversity of non-native and native fishes during 16 years in five hyperdiverse tropical shallow lakes. We further elucidated how an observed increase in the proportion of richness, biomass, and ß-diversity of non-native over native fishes affect crucial multifunctional processes of lakes (decomposition, productivity). We found a general positive relationship between the richness and biomass of non-native and native fishes. However, the slope of this relationship decreased continuously with time, displaying an increase in non-native species richness and a decrease in native species richness over time. We also detected a negative relationship between the ß-diversity of non-native and native fishes over time. Moreover, the increase in the non-native:native ratio of species richness, biomass, and ß-diversity over time decreased ecosystem multifunctionality. Our results suggest that non-native fishes caused a homogenization of the native fish species over time, resulting in impoverishment of ecosystem multifunctionality; in part because non-native fishes are less productive than native ones. Therefore, focus on long-term effects and use of multiple biodiversity facets (α- and ß-diversity) are crucial to make reliable predictions of the effects of non-native fish species on native fishes and ecosystem functioning.


Assuntos
Ecossistema , Lagos , Animais , Biodiversidade , Biomassa , Peixes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA