Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 6181, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277076

RESUMO

Scalable technologies to characterize the performance of quantum devices are crucial to creating large quantum networks and quantum processing units. Chief among the resources of quantum information processing is entanglement. Here we describe the full temporal and spatial characterization of polarization-entangled photons produced by Spontaneous Parametric Down Conversions using an intensified high-speed optical camera, Tpx3Cam. This novel technique allows for precise determination of Bell inequality parameters with minimal technical overhead, and for new characterization methods for the spatial distribution of entangled quantum information. The fast-optical camera could lead to multiple applications in Quantum Information Science, opening new perspectives for the scalability of quantum experiments.

2.
Phys Rev Lett ; 125(24): 243601, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33412068

RESUMO

The development of useful photon-photon interactions can trigger numerous breakthroughs in quantum information science, however, this has remained a considerable challenge spanning several decades. Here, we demonstrate the first room-temperature implementation of large phase shifts (≈π) on a single-photon level probe pulse (1.5 µs) triggered by a simultaneously propagating few-photon-level signal field. This process is mediated by Rb^{87} vapor in a double-Λ atomic configuration. We use homodyne tomography to obtain the quadrature statistics of the phase-shifted quantum fields and perform maximum-likelihood estimation to reconstruct their quantum state in the Fock state basis. For the probe field, we have observed input-output fidelities higher than 90% for phase-shifted output states, and high overlap (over 90%) with a theoretically perfect coherent state. Our noise-free, four-wave-mixing-mediated photon-photon interface is a key milestone toward developing quantum logic and nondemolition photon detection using schemes such as coherent photon conversion.

3.
Sci Rep ; 5: 16581, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26585904

RESUMO

Any optical quantum information processing machine would be comprised of fully-characterized constituent devices for both single state manipulations and tasks involving the interaction between multiple quantum optical states. Ideally for the latter, would be an apparatus capable of deterministic optical phase shifts that operate on input quantum states with the action mediated solely by auxiliary signal fields. Here we present the complete experimental characterization of a system designed for optically controlled phase shifts acting on single-photon level probe coherent states. Our setup is based on a warm vapor of rubidium atoms under the conditions of electromagnetically induced transparency with its dispersion properties modified through the use of an optically triggered N-type Kerr non-linearity. We fully characterize the performance of our device by sending in a set of input probe states and measuring the corresponding output via time-domain homodyne tomography and subsequently performing the technique of coherent state quantum process tomography. This method provides us with the precise knowledge of how our optical phase shift will modify any arbitrary input quantum state engineered in the mode of the reconstruction.

4.
Sci Rep ; 5: 7658, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25564048

RESUMO

An optical quantum memory is a stationary device that is capable of storing and recreating photonic qubits with a higher fidelity than any classical device. Thus far, these two requirements have been fulfilled for polarization qubits in systems based on cold atoms and cryogenically cooled crystals. Here, we report a room-temperature memory capable of storing arbitrary polarization qubits with a signal-to-background ratio higher than 1 and an average fidelity surpassing the classical benchmark for weak laser pulses containing 1.6 photons on average, without taking into account non-unitary operation. Our results demonstrate that a common vapor cell can reach the low background noise levels necessary for polarization qubit storage using single-photon level light, and propels atomic-vapor systems towards a level of functionality akin to other quantum information processing architectures.

5.
Nature ; 484(7393): 195-200, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22498625

RESUMO

Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.

6.
Nature ; 473(7346): 190-3, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21532588

RESUMO

The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180 microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

7.
Nature ; 465(7299): 755-8, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20463661

RESUMO

Optical nonlinearities offer unique possibilities for the control of light with light. A prominent example is electromagnetically induced transparency (EIT), where the transmission of a probe beam through an optically dense medium is manipulated by means of a control beam. Scaling such experiments into the quantum domain with one (or just a few) particles of light and matter will allow for the implementation of quantum computing protocols with atoms and photons, or the realization of strongly interacting photon gases exhibiting quantum phase transitions of light. Reaching these aims is challenging and requires an enhanced matter-light interaction, as provided by cavity quantum electrodynamics. Here we demonstrate EIT with a single atom quasi-permanently trapped inside a high-finesse optical cavity. The atom acts as a quantum-optical transistor with the ability to coherently control the transmission of light through the cavity. We investigate the scaling of EIT when the atom number is increased one-by-one. The measured spectra are in excellent agreement with a theoretical model. Merging EIT with cavity quantum electrodynamics and single quanta of matter is likely to become the cornerstone for novel applications, such as dynamic control of the photon statistics of propagating light fields or the engineering of Fock state superpositions of flying light pulses.

8.
Science ; 322(5901): 563-6, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18818366

RESUMO

The technologies of quantum information and quantum control are rapidly improving, but full exploitation of their capabilities requires complete characterization and assessment of processes that occur within quantum devices. We present a method for characterizing, with arbitrarily high accuracy, any quantum optical process. Our protocol recovers complete knowledge of the process by studying, via homodyne tomography, its effect on a set of coherent states, that is, classical fields produced by common laser sources. We demonstrate the capability of our protocol by evaluating and experimentally verifying the effect of a test process on squeezed vacuum.

9.
Phys Rev Lett ; 100(9): 093602, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352710

RESUMO

We produce a 600-ns pulse of 1.86-dB squeezed vacuum at 795 nm in an optical parametric amplifier and store it in a rubidium vapor cell for 1 mus using electromagnetically induced transparency. The recovered pulse, analyzed using time-domain homodyne tomography, exhibits up to 0.21+/-0.04 dB of squeezing. We identify the factors leading to the degradation of squeezing and investigate the phase evolution of the atomic coherence during the storage interval.

10.
Opt Lett ; 32(19): 2771-3, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909568

RESUMO

We experimentally demonstrate a communication protocol that enables frequency conversion and routing of quantum information in an adiabatic and thus robust way. The protocol is based on electromagnetically induced transparency (EIT) in systems with multiple excited levels: transfer and/or distribution of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA