Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Am Coll Health ; 71(4): 1213-1219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34242547

RESUMO

ObjectiveThe present study aims to examine the impacts of a mandatory physical activity (PA) course on exercise motivation among predominately Hispanic college students. The course was designed based on the Self-Determination Theory to increase students' PA motivation. Methods: A total of 383 college students (nmales=126; nfemales=257; Mage=19.6; 67.6% Hispanic/Latino[a]) participated in the course and completed the Behavioral Regulation to Exercise Questionnaire-2 at the beginning (pretest) and the end of the course (post-test). This questionnaire measured five motivation constructs: amotivation, intrinsic motivation, extrinsic motivation, introjected regulation, and identified regulation. Results: Findings showed significant increases from pretest to post-test in all five motivation constructs (ps < 0.01). Conclusions: Although the mandatory PA curriculum successfully increased the intrinsic motivation, extrinsic motivation, introjected regulation, and identified regulation among college students, amotivation was also increased. These outcomes suggested some positive impacts on Hispanic college students' motivation to participate in PA. Findings can assist researchers and educators in developing, implementing, and evaluating required PA courses in colleges and universities.


Assuntos
Currículo , Exercício Físico , Motivação , Feminino , Humanos , Masculino , Hispânico ou Latino , Estudantes , Universidades
2.
Geobiology ; 20(1): 60-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34331395

RESUMO

The sedimentary pyrite sulfur isotope (δ34 S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34 S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34 S geochemistry. Pyrite δ34 S values often capture δ34 S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34 S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34 S trends and δ34 S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment-water interface of this sinkhole hosts a low-oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34 S signatures in early Earth environments. Porewater sulfide δ34 S values vary by up to ~25‰ throughout the day due to light-driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34 S variability, instead of variations in average cell-specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34 S values of pyrite are similar to porewater sulfide δ34 S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34 S signatures of pyrite deposited in organic-rich, iron-poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.


Assuntos
Cianobactérias , Microbiota , Sedimentos Geológicos/química , Ferro/química , Oxigênio , Sulfetos/química , Isótopos de Enxofre/análise
3.
Nat Commun ; 12(1): 4403, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285238

RESUMO

Sulfur cycling is ubiquitous in sedimentary environments, where it mediates organic carbon remineralization, impacting both local and global redox budgets, and leaving an imprint in pyrite sulfur isotope ratios (δ34Spyr). It is unclear to what extent stratigraphic δ34Spyr variations reflect local aspects of the depositional environment or microbial activity versus global sulfur-cycle variations. Here, we couple carbon-nitrogen-sulfur concentrations and stable isotopes to identify clear influences on δ34Spyr of local environmental changes along the Peru margin. Stratigraphically coherent glacial-interglacial δ34Spyr fluctuations (>30‰) were mediated by Oxygen Minimum Zone intensification/expansion and local enhancement of organic matter deposition. The higher resulting microbial sulfate reduction rates led to more effective drawdown and 34S-enrichment of residual porewater sulfate and sulfide produced from it, some of which is preserved in pyrite. We identify organic carbon loading as a major influence on δ34Spyr, adding to the growing body of evidence highlighting the local controls on these records.


Assuntos
Bactérias Anaeróbias/metabolismo , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Oxigênio/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Geografia , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Ferro/química , Oxirredução , Peru , Sulfetos/química , Isótopos de Enxofre/análise
5.
Expert Rev Clin Pharmacol ; 14(3): 399-404, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33576287

RESUMO

Background: : Proton pump inhibitors (PPI) are associated with Clostridium difficile infection (CDI). Impact of the route of administration is unknown.Research Design and Methods: Patients in Multiparameter Intelligent Monitoring in Intensive Care II database (MIMIC-II) from 2001 to 2008, >18 years old, admitted to medical, surgical, or cardiac ICUs were included. PPI exposures were omeprazole, esomeprazole, lansoprazole, and pantoprazole. PPI administration routes were oral or intravenous. Patients who received histamine receptor antagonists (H2RA) were the control arm. CDI was identified using ICD-9 diagnostic code 008.45. Multiple logistic regression analysis was performed to calculate odds ratios (OR).Results: The study included 16,820 patients (57% male) with a mean age of 63 (SD±17) years and hospitalization duration of 10.2 days (SD±11). Pantoprazole was the most common PPI (94%). CDI occurred in 2.4% and more in patients receiving PPIs than H2RAs (3.0% vs. 0.8%, p < 0.001). CDI prevalence increased with intravenous (95%CI = 1.69-3.39, OR 2.4) and oral (95%CI = 1.59-3.27, OR 2.3) PPI use compared to H2RAs. CDI prevalence was not associated with PPI route in the multivariable model (OR 1.07, 95%CI 0.86-1.34).Conclusions: Both intravenous and oral PPI use in the ICU were independently associated with CDI.


Assuntos
Infecções por Clostridium/epidemiologia , Infecção Hospitalar/epidemiologia , Unidades de Terapia Intensiva , Inibidores da Bomba de Prótons/efeitos adversos , Administração Intravenosa , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Infecção Hospitalar/microbiologia , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Prevalência , Inibidores da Bomba de Prótons/administração & dosagem , Estudos Retrospectivos
6.
BMC Biol ; 19(1): 8, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33455582

RESUMO

BACKGROUND: Numerous deep-sea invertebrates, at both hydrothermal vents and methane seeps, have formed symbiotic associations with internal chemosynthetic bacteria in order to harness inorganic energy sources typically unavailable to animals. Despite success in nearly all marine habitats and their well-known associations with photosynthetic symbionts, Cnidaria remain one of the only phyla present in the deep-sea without a clearly documented example of dependence on chemosynthetic symbionts. RESULTS: A new chemosynthetic symbiosis between the sea anemone Ostiactis pearseae and intracellular bacteria was discovered at ~ 3700 m deep hydrothermal vents in the southern Pescadero Basin, Gulf of California. Unlike most sea anemones observed from chemically reduced habitats, this species was observed in and amongst vigorously venting fluids, side-by-side with the chemosynthetic tubeworm Oasisia aff. alvinae. Individuals of O. pearseae displayed carbon, nitrogen, and sulfur tissue isotope values suggestive of a nutritional strategy distinct from the suspension feeding or prey capture conventionally employed by sea anemones. Molecular and microscopic evidence confirmed the presence of intracellular SUP05-related bacteria housed in the tentacle epidermis of O. pearseae specimens collected from 5 hydrothermally active structures within two vent fields ~ 2 km apart. SUP05 bacteria (Thioglobaceae) dominated the O. pearseae bacterial community, but were not recovered from other nearby anemones, and were generally rare in the surrounding water. Further, the specific Ostiactis-associated SUP05 phylotypes were not detected in the environment, indicating a specific association. Two unusual candidate bacterial phyla (the OD1 and BD1-5 groups) appear to associate exclusively with O. pearseae and may play a role in symbiont sulfur cycling. CONCLUSION: The Cnidarian Ostiactis pearseae maintains a physical and nutritional alliance with chemosynthetic bacteria. The mixotrophic nature of this symbiosis is consistent with what is known about other cnidarians and the SUP05 bacterial group, in that they both form dynamic relationships to succeed in nature. The advantages gained by appropriating metabolic and structural resources from each other presumably contribute to their striking abundance in the Pescadero Basin, at the deepest known hydrothermal vents in the Pacific Ocean.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Fontes Hidrotermais , Anêmonas-do-Mar/metabolismo , Simbiose , Fenômenos Fisiológicos da Nutrição Animal , Animais , México , Oceano Pacífico
7.
Rapid Commun Mass Spectrom ; 35(1): e8958, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991016

RESUMO

RATIONALE: Secondary ion mass spectrometry data collected using electron multiplier detectors are subject to a correction for the quasi-simultaneous arrival (QSA) effect. Published Poisson statistical models indicate that the QSA coefficients, ß, should have an invariant value of 0.5, whereas, with one exception, published experimental determinations vary between 0.6 and 1.0, with a mean value of 0.75. METHODS: We developed a more complex model, combining both ion emission and attenuation, that predicts the observed range in measured ß and elucidates the mechanism of secondary ion formation. For a given aperture setting, any secondary ion has an equal probability of successful transit to the electron multiplier. Binomial statistics can model pass-fail aperture attenuation but require probability distributions of the quasi-simultaneously emitted (QSE) ion tally, per primary ion, as input. Assuming (a) that each primary ion impact results in 0, 1, 2,… secondary ion emissions, randomly, with an average Ks and (b) that there is finite probability (P2) of a further emission process dependent on Ks , the required QSE probability distributions were generated via a combined Poisson-binomial statistical model. RESULTS: The value of ß was output as a function of Ks and P2. For values of P2 > 0 and any value of Ks , ß always exceeds 0.5. As P2 → 0, ß â†’ 0.5; for values of increasing P2 > 0.5 and decreasing Ks < 0.5, ß â†’ >1. CONCLUSIONS: Were the emission of one ion not to influence the probability of the formation of a second (i.e. model output for P2 = 0), ß should always be 0.5. Yet measurements have never reported this value. Consequently, assuming that published ß values are correct, emissions of QSE secondary ions do not occur independently, and it may be inferred that there are linked mechanisms of secondary ion formation as shown here.

8.
Front Microbiol ; 11: 529317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072004

RESUMO

The use of stable isotopes to trace biogeochemical sulfur cycling relies on an understanding of how isotopic fractionation is imposed by metabolic networks. We investigated the effects of the first two enzymatic steps in the dissimilatory sulfate reduction (DSR) network - sulfate permease and sulfate adenylyl transferase (Sat) - on the sulfur and oxygen isotopic composition of residual sulfate. Mutant strains of Desulfovibrio vulgaris str. Hildenborough (DvH) with perturbed expression of these enzymes were grown in batch culture, with a subset grown in continuous culture, to examine the impact of these enzymatic steps on growth rate, cell specific sulfate reduction rate and isotopic fractionations in comparison to the wild type strain. Deletion of several permease genes resulted in only small (∼1‰) changes in sulfur isotope fractionation, a difference that approaches the uncertainties of the measurement. Mutants that perturb Sat expression show higher fractionations than the wild type strain. This increase probably relates to an increased material flux between sulfate and APS, allowing an increase in the expressed fractionation of rate-limiting APS reductase. This work illustrates that flux through the initial steps of the DSR pathway can affect the fractionation imposed by the overall pathway, even though these steps are themselves likely to impose only small fractionations.

9.
PLoS One ; 15(6): e0234175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32502166

RESUMO

Shallow-sea hydrothermal systems, like their deep-sea and terrestrial counterparts, can serve as relatively accessible portals into the microbial ecology of subsurface environments. In this study, we determined the chemical composition of 47 sediment porewater samples along a transect from a diffuse shallow-sea hydrothermal vent to a non-thermal background area in Paleochori Bay, Milos Island, Greece. These geochemical data were combined with thermodynamic calculations to quantify potential sources of energy that may support in situ chemolithotrophy. The Gibbs energies (ΔGr) of 730 redox reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As-bearing compounds were calculated. Of these reactions, 379 were exergonic at one or more sampling locations. The greatest energy yields were from anaerobic CO oxidation with NO2- (-136 to -162 kJ/mol e-), followed by reactions in which the electron acceptor/donor pairs were O2/CO, NO3-/CO, and NO2-/H2S. When expressed as energy densities (where the concentration of the limiting reactant is taken into account), a different set of redox reactions are the most exergonic: in sediments affected by hydrothermal input, sulfide oxidation with a range of electron acceptors or nitrite reduction with different electron donors provide 85~245 J per kg of sediment, whereas in sediments less affected or unaffected by hydrothermal input, various S0 oxidation reactions and aerobic respiration reactions with several different electron donors are most energy-yielding (80~95 J per kg of sediment). A model that considers seawater mixing with hydrothermal fluids revealed that there is up to ~50 times more energy available for microorganisms that can use S0 or H2S as electron donors and NO2- or O2 as electron acceptors compared to other reactions. In addition to revealing likely metabolic pathways in the near-surface and subsurface mixing zones, thermodynamic calculations like these can help guide novel microbial cultivation efforts to isolate new species.


Assuntos
Metabolismo Energético , Fontes Hidrotermais , Grécia , Fontes Hidrotermais/microbiologia , Ilhas , Termodinâmica
10.
Astrobiology ; 20(4): 525-536, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31859527

RESUMO

Uncovering and understanding the chemical and fossil record of ancient life is crucial to understanding how life arose, evolved, and distributed itself across Earth. Potential signs of ancient life, however, are often challenging to establish as definitively biological and require multiple lines of evidence. Hydrothermal silica deposits may preserve some of the most ancient evidence of life on Earth, and such deposits are also suggested to exist on the surface of Mars. Here we use micron-scale elemental mapping by secondary ion mass spectrometry to explore for trace elements that are preferentially sequestered by microbial life and subsequently preserved in hydrothermal deposits. The spatial distributions and concentrations of trace elements associated with life in such hydrothermal silica deposits may have a novel application as a biosignature in constraining ancient life on Earth as well as the search for evidence of past life on Mars. We find that active microbial mats and recent siliceous sinter deposits from an alkaline hot spring in Yellowstone National Park appear to sequester and preserve Ga, Fe, and perhaps Mn through early diagenesis as indicators of the presence of life during formation.


Assuntos
Sedimentos Geológicos/química , Fontes Termais , Dióxido de Silício/química , Oligoelementos/análise , Planeta Terra , Gálio/análise , Ferro/análise , Manganês/análise , Espectrometria de Massas , Montana , Origem da Vida
11.
Geobiology ; 17(5): 564-576, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31180189

RESUMO

Microbial sulfur cycling in marine sediments often occurs in environments characterized by transient chemical gradients that affect both the availability of nutrients and the activity of microbes. High turnover rates of intermediate valence sulfur compounds and the intermittent availability of oxygen in these systems greatly impact the activity of sulfur-oxidizing micro-organisms in particular. In this study, the thiosulfate-oxidizing hydrothermal vent bacterium Thiomicrospira thermophila strain EPR85 was grown in continuous culture at a range of dissolved oxygen concentrations (0.04-1.9 mM) and high pressure (5-10 MPa) in medium buffered at pH 8. Thiosulfate oxidation under these conditions produced tetrathionate, sulfate, and elemental sulfur, in contrast to previous closed-system experiments at ambient pressure during which thiosulfate was quantitatively oxidized to sulfate. The maximum observed specific growth rate at 5 MPa pressure under unlimited O2 was 0.25 hr-1 . This is comparable to the µmax (0.28 hr-1 ) observed at low pH (<6) at ambient pressure when T. thermophila produces the same mix of sulfur species. The half-saturation constant for O2 ( KO2 ) estimated from this study was 0.2 mM (at a cell density of 105 cells/ml) and was robust at all pressures tested (0.4-10 MPa), consistent with piezotolerant behavior of this strain. The cell-specific KO2 was determined to be 1.5 pmol O2 /cell. The concentrations of products formed were correlated with oxygen availability, with tetrathionate production in excess of sulfate production at all pressure conditions tested. This study provides evidence for transient sulfur storage during times when substrate concentration exceeds cell-specific KO2 and subsequent consumption when oxygen dropped below that threshold. These results may be common among sulfur oxidizers in a variety of environments (e.g., deep marine sediments to photosynthetic microbial mats).


Assuntos
Sedimentos Geológicos/química , Oxigênio/análise , Piscirickettsiaceae/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Oxirredução , Pressão , Água do Mar/microbiologia
12.
Nat Commun ; 10(1): 1355, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30902976

RESUMO

Extracellular electron uptake (EEU) is the ability of microbes to take up electrons from solid-phase conductive substances such as metal oxides. EEU is performed by prevalent phototrophic bacterial genera, but the electron transfer pathways and the physiological electron sinks are poorly understood. Here we show that electrons enter the photosynthetic electron transport chain during EEU in the phototrophic bacterium Rhodopseudomonas palustris TIE-1. Cathodic electron flow is also correlated with a highly reducing intracellular redox environment. We show that reducing equivalents are used for carbon dioxide (CO2) fixation, which is the primary electron sink. Deletion of the genes encoding ruBisCO (the CO2-fixing enzyme of the Calvin-Benson-Bassham cycle) leads to a 90% reduction in EEU. This work shows that phototrophs can directly use solid-phase conductive substances for electron transfer, energy transduction, and CO2 fixation.


Assuntos
Ciclo do Carbono , Dióxido de Carbono/metabolismo , Elétrons , Espaço Extracelular/metabolismo , Processos Fototróficos , Rodopseudomonas/metabolismo , Hidrogênio/metabolismo , Espaço Intracelular/metabolismo , Modelos Biológicos , Oxirredução , Fotossíntese , Rodopseudomonas/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/metabolismo
13.
Rapid Commun Mass Spectrom ; 33(5): 491-502, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561860

RESUMO

RATIONALE: Sulfur isotope ratio measurements of bulk sulfide from marine sediments have often been used to reconstruct environmental conditions associated with their formation. In situ microscale spot analyses by secondary ion mass spectrometry (SIMS) and laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) have been utilized for the same purpose. However, these techniques are often not suitable for studying small (≤10 µm) grains or for detecting intra-grain variability. METHODS: Here, we present a method for the physical extraction (using lithium polytungstate heavy liquid) and subsequent sulfur isotope analysis (using SIMS; CAMECA IMS 7f-GEO) of microcrystalline iron sulfides. SIMS sulfur isotope ratio measurements were made via Cs+ bombardment of raster squares with sides of 20-130 µm, using an electron multiplier (EM) detector to collect counts of 32 S- and 34 S- for each pixel (128 × 128 pixel grids) for between 20 and 960 cycles. RESULTS: The extraction procedure did not discernibly alter pyrite grain-size distributions. The apparent inter-grain variability in 34 S/32 S in 1-4 µm-sized pyrite and marcasite fragments from isotopically homogeneous hydrothermal crystals was ~ ±2‰ (1σ), comparable with the standard error of the mean for individual measurements (≤ ±2‰, 1σ). In contrast, grain-specific 34 S/32 S ratios in modern and ancient sedimentary pyrites and marcasites can have inter- and intra-grain variability >60‰. The distributions of intra-sample isotopic variability are consistent with bulk 34 S/32 S values. CONCLUSIONS: SIMS analyses of isolated iron sulfide grains yielded distributions that are isotopically representative of bulk 34 S/32 S values. Populations of iron sulfide grains from sedimentary samples record the evolution of the S-isotopic composition of pore water sulfide in their S-isotopic compositions. These data allow past local environmental conditions to be inferred.

14.
Geobiology ; 17(2): 199-222, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30548907

RESUMO

Environmental fluctuations are recorded in a variety of sedimentary archives of lacustrine depositional systems. Geochemical signals recovered from bottom sediments in closed-basin lakes are among the most sensitive paleoenvironmental indicators and are commonly used in reconstructing lake evolution. Microbialites (i.e., organosedimentary deposits accreted through microbial trapping and binding of detrital sediment or in situ mineral precipitation on organics [Palaios, 2, 1987, 241]), however, have been largely overlooked as paleoenvironmental repositories. Here, we investigate concentrically laminated mineralized microbialites from Laguna Negra, a high-altitude (4,100 m above sea level) hypersaline, closed-basin lake in northwestern Argentina, and explore the potential for recovery of environmental signals from these unique sedimentary archives. Spatial heterogeneity in hydrological regime helps define zones inside Laguna Negra, each with their own morphologically distinct microbialite type. Most notably, platey microbialites (in Zone 3A) are precipitated by evaporative concentration processes, while discoidal oncolites (in Zone 3C) are interpreted result from fluid mixing and biologically mediated nucleation. This spatial heterogeneity is reflected in petrographically distinct carbonate fabrics: micritic, botryoidal, and isopachous. Fabric type is interpreted to reflect a combination of physical and biological influences during mineralization, and paired C-isotope measurement of carbonate and organic matter supports ecological differences as a dominant control on C-isotopic evolution between zones. Laminae of Laguna Negra microbialites preserve a range of δ13 Ccarb from +5.75‰ to +18.25‰ and δ18 Ocarb from -2.04‰ to +9.28‰. Temporal trends of lower carbon and oxygen isotopic compositions suggest that the influence of CO2 degassing associated with evaporation has decreased over time. Combined, these results indicate that microbialite archives can provide data that aid in interpretation of both lake paleohydrology and paleoenvironmental change.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/química , Lagos/química , Argentina , Carbonatos/metabolismo , Minerais/metabolismo , Isótopos de Oxigênio/metabolismo
15.
Nat Commun ; 9(1): 3409, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143628

RESUMO

Ocean Anoxic Event 2 (OAE2) was a period of dramatic disruption to the global carbon cycle when massive amounts of organic matter (OM) were buried in marine sediments via complex and controversial mechanisms. Here we investigate the role of OM sulfurization, which makes OM less available for microbial respiration, in driving variable OM preservation in OAE2 sedimentary strata from Pont d'Issole (France). We find correlations between the concentration, S:C ratio, S-isotope composition, and sulfur speciation of OM suggesting that sulfurization facilitated changes in carbon burial at this site as the chemocline moved in and out of the sediments during deposition. These patterns are reproduced by a simple model, suggesting that small changes in primary productivity could drive large changes in local OM burial in environments poised near a critical redox threshold. This amplifying mechanism may be central to understanding the magnitude of global carbon cycle response to environmental perturbations.

16.
Environ Microbiol ; 20(12): 4281-4296, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29968367

RESUMO

Nitrogen fixation, the biological conversion of N2 to NH3 , is critical to alleviating nitrogen limitation in many marine ecosystems. To date, few measurements exist of N2 fixation in deep-sea sediments. Here, we conducted > 400 bottle incubations with sediments from methane seeps, whale falls and background sites off the western coast of the United States from 600 to 2893 m water depth to investigate the potential rates, spatial distribution and biological mediators of benthic N2 fixation. We found that N2 fixation was widespread, yet heterogeneously distributed with sediment depth at all sites. In some locations, rates exceeded previous measurements by > 10×, and provided up to 30% of the community anabolic growth requirement for nitrogen. Diazotrophic activity appeared to be inhibited by pore water ammonium: N2 fixation was only observed if incubation ammonium concentrations were ≤ 25 µM, and experimental additions of ammonium reduced diazotrophy. In seep sediments, N2 fixation was dependent on CH4 and coincident with sulphate reduction, consistent with previous work showing diazotrophy by microorganisms mediating sulphate-coupled methane oxidation. However, the pattern of diazotrophy was different in whale-fall and associated reference sediments, where it was largely unaffected by CH4 , suggesting catabolically different diazotrophs at these sites.


Assuntos
Bactérias/metabolismo , Carbono/química , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio/fisiologia , Compostos de Amônio , Ecossistema , Metano , Nitrogênio , Oceano Pacífico , Água do Mar , Microbiologia do Solo
17.
Phys Ther ; 98(4): 269-276, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390081

RESUMO

Background: The American Physical Therapy Association (APTA) has been working toward a vision of increasing professional focus on societal-level health. However, performance of social responsibility and related behaviors by physical therapists remain relatively poorly integrated into practice. Promoting a focus on societal outreach is necessary for all health care professionals to impact the health of their communities. Objective: The objective was to document the validity of the 14-item Societal Outreach Scale (SOS) for use with practicing physical therapists. Design: This study used a cross-sectional survey. Methods: The SOS was transmitted via email to all therapists who were licensed and practicing in 10 states in the United States that were purposefully selected to assure a broad representation. A sample of 2612 usable responses was received. Factor analysis was applied to assess construct validity of the instrument. Results: Of alternate models, a 3-factor model best demonstrated goodness of fit with the sample data according to conventional indices (standardized root mean squared residual = .03, comparative fit index .96, root mean square error of approximation = .06). The 3 factors measured by the SOS were labeled Societal-Level Health Advocacy, Community Engagement/Social Integration, and Political Engagement. Internal consistency reliability was 0.7 for all factors. The 3-factor SOS demonstrated acceptable validity and reliability. Limitations: Though the sample included a broad representation of physical therapists, this was a single cross-sectional study. Additional confirmatory factor analysis, reliability testing, and word refinement of the tool are warranted. Conclusions: Given the construct validity and reliability of the 3-factor SOS, it is recommended for use as a validated instrument to measure physical therapists' performance of social responsibility and related behaviors.


Assuntos
Especialidade de Fisioterapia , Responsabilidade Social , Adulto , Estudos Transversais , Análise Fatorial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Psicometria , Inquéritos e Questionários , Estados Unidos
18.
Appl Spectrosc ; 72(1): 37-47, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28945099

RESUMO

Two probable causes of variability in the Raman spectrum of unpolished pyrite are well recognized, in principle, but not always in practice, namely: (1) downshifting of band positions due to laser heating; and (2) variations in the ratios of band intensities due to crystallographic orientation of the sample with respect to the laser's dominant polarization plane. The aims of this paper are to determine whether these variations can be used to acquire additional information about pyrites. Here, using laser Raman microprobe analysis of natural, unpolished pyrite samples, we investigate the magnitude of downshifting of band positions associated with laser heating of different sizes of pyrite grains. We demonstrate that the magnitude of this effect can be large (up to ∼10 cm-1), negatively proportional to grain size, of greater magnitude than the effect typically attributable to natural intersample differences in trace element (TE) solid solution, and of similar magnitude among bands. Through Raman analysis of naturally occurring faces on pyrite samples at various angles of rotation, we also demonstrate that the three most common faces on pyrite can be distinguished by the ratio of the intensities of the dominant bands. We conclude that for unpolished samples, laser Raman microprobe analysis is most effective as a means of identifying pyrite, and the presence of solid solution therein, when laser power is low enough to avoid substantial heating. Once pyrite has been identified, higher laser powers can be used to produce spectra whose ratios of band intensities indicate the face or crystallographic plane being irradiated.

19.
Pharmacotherapy ; 37(10): 1231-1240, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730691

RESUMO

OBJECTIVES: To determine whether discontinuation of chronic antidepressant therapy is associated with a higher risk of antidepressant discontinuation syndrome (ADS) symptoms in patients admitted to the intensive care unit (ICU) when compared with those who were continued on therapy and to identify factors associated with increased risk of ADS in this population. DESIGN: Single-center retrospective observational cohort study. SETTING: ICUs in a tertiary care hospital. PATIENTS: A total of 106 adult patients, admitted to the ICU between September 2013 and August 2014, who had a length of stay of 72 hours or longer and who were receiving chronic selective serotonin inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs) before admission. MEASUREMENTS AND MAIN RESULTS: Patients were classified as continued or discontinued from therapy based on initiation of home SSRI/SNRI therapy within 48 hours of admission. The primary end point was incidence of ADS symptoms. Type of symptoms, receipt of symptom-related therapies, and length of stay were also assessed. Sequential logistic regression analysis was used to determine the impact of discontinuation while controlling for other risk factors. Therapy was discontinued in 38.7% of patients. The risk of developing ADS symptoms was higher in discontinued patients (unadjusted odds ratio [OR] 2.6, 95% confidence interval [CI] 1.12-6.07, p=0.024). After adjusting for covariates, the odds of ADS increased (adjusted OR 3.8, 95% CI 1.3-11.7, p=0.018). Female sex was associated with an increase in risk of ADS (OR 3.4, 95% CI 1.2-10.0, p=0.026). Affective symptoms were the most prevalent type reported (34.1% vs 10.8%, p=0.005). Use of symptom-related therapies and length of stay did not differ between groups. CONCLUSION: Abrupt discontinuation of SSRI/SNRI therapy increases the risk of ADS symptoms in critically ill patients, particularly in females. These results underscore the importance of continuation of home antidepressant therapy even in the setting of critical illness.


Assuntos
Antidepressivos/administração & dosagem , Estado Terminal , Adesão à Medicação , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Inibidores da Recaptação de Serotonina e Norepinefrina/administração & dosagem , Síndrome de Abstinência a Substâncias/etiologia , Antidepressivos/uso terapêutico , Feminino , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Inibidores da Recaptação de Serotonina e Norepinefrina/uso terapêutico , Síndrome de Abstinência a Substâncias/epidemiologia
20.
Proc Natl Acad Sci U S A ; 114(23): 5941-5945, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533378

RESUMO

The sulfur biogeochemical cycle plays a key role in regulating Earth's surface redox through diverse abiotic and biological reactions that have distinctive stable isotopic fractionations. As such, variations in the sulfur isotopic composition (δ34S) of sedimentary sulfate and sulfide phases over Earth history can be used to infer substantive changes to the Earth's surface environment, including the rise of atmospheric oxygen. Such inferences assume that individual δ34S records reflect temporal changes in the global sulfur cycle; this assumption may be well grounded for sulfate-bearing minerals but is less well established for pyrite-based records. Here, we investigate alternative controls on the sedimentary sulfur isotopic composition of marine pyrite by examining a 300-m drill core of Mediterranean sediments deposited over the past 500,000 y and spanning the last five glacial-interglacial periods. Because this interval is far shorter than the residence time of marine sulfate, any change in the sulfur isotopic record preserved in pyrite (δ34Spyr) necessarily corresponds to local environmental changes. The stratigraphic variations (>76‰) in the isotopic data reported here are among the largest ever observed in pyrite, and are in phase with glacial-interglacial sea level and temperature changes. In this case, the dominant control appears to be glacial-interglacial variations in sedimentation rates. These results suggest that there exist important but previously overlooked depositional controls on sedimentary sulfur isotope records, especially associated with intervals of substantial sea level change. This work provides an important perspective on the origin of variability in such records and suggests meaningful paleoenvironmental information can be derived from pyrite δ34S records.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA