Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804842

RESUMO

In most patients with advanced systemic mastocytosis (AdvSM), neoplastic mast cells (MC) express KIT D816V. However, despite their disease-modifying potential, KIT D816V-targeting drugs, including midostaurin and avapritinib, may not produce long-term remissions in all patients. Cyclin-dependent kinase (CDK) 4 and CDK6 are promising targets in oncology. We found that shRNA-mediated knockdown of CDK4 and CDK6 results in growth arrest in the KIT D816V+ MC line HMC-1.2. The CDK4/CDK6 inhibitors palbociclib, ribociclib, and abemaciclib suppressed the proliferation in primary neoplastic MC as well as in all HMC-1 and ROSA cell subclones that were examined. Abemaciclib was also found to block growth in the drug-resistant MC line MCPV-1, whereas no effects were seen with palbociclib and ribociclib. Anti-proliferative drug effects on MC were accompanied by cell cycle arrest. Furthermore, CDK4/CDK6 inhibitors were found to synergize with the KIT-targeting drugs midostaurin, avapritinib, and nintedanib in inducing growth inhibition and apoptosis in neoplastic MCs. Finally, we found that CDK4/CDK6 inhibitors induce apoptosis in CD34+/CD38- stem cells in AdvSM. Together, CDK4/CDK6 inhibition is a potent approach to suppress the growth of neoplastic cells in AdvSM. Whether CDK4/CDK6 inhibitors can improve clinical outcomes in patients with AdvSM remains to be determined in clinical trials.

2.
Am J Cancer Res ; 11(9): 4470-4484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659899

RESUMO

Ponatinib is a tyrosine kinase inhibitor (TKI) directed against BCR-ABL1 which is successfully used in patients with BCR-ABL1 T315I+ chronic myeloid leukemia (CML). However, BCR-ABL1 compound mutations may develop during therapy in these patients and may lead to drug resistance. Asciminib is a novel drug capable of targeting most BCR-ABL1 mutant-forms, including BCR-ABL1T315I, but remains ineffective against most BCR-ABL1T315I+ compound mutation-bearing sub-clones. We demonstrate that asciminib synergizes with ponatinib in inducing growth-arrest and apoptosis in patient-derived CML cell lines and murine Ba/F3 cells harboring BCR-ABL1 T315I or T315I-including compound mutations. Asciminib and ponatinib also produced cooperative effects on CRKL phosphorylation in BCR-ABL1-transformed cells. The growth-inhibitory effects of the drug combination 'asciminib+ponatinib' was further enhanced by hydroxyurea (HU), a drug which has lately been described to suppresses the proliferation of BCR-ABL1 T315I+ CML cells. Cooperative drug effects were also observed in patient-derived CML cells. Most importantly, we were able to show that the combinations 'asciminib+ponatinib' and 'asciminib+ponatinib+HU' produce synergistic apoptosis-inducing effects in CD34+/CD38- CML stem cells obtained from patients with chronic phase CML or BCR-ABL1 T315I+ CML blast phase. Together, asciminib, ponatinib and HU synergize in producing anti-leukemic effects in multi-resistant CML cells, including cells harboring T315I+ BCR-ABL1 compound mutations and CML stem cells. The clinical efficacy of this TKI combination needs to be evaluated within the frame of upcoming clinical trials.

3.
Am J Cancer Res ; 11(12): 6042-6059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018241

RESUMO

Recent data suggest that the disease-associated microenvironment, known as the leukemic stem cell (LSC) niche, is substantially involved in drug resistance of LSC in BCR-ABL1+ chronic myeloid leukemia (CML). Attacking the LSC niche in CML may thus be an effective approach to overcome drug resistance. We have recently shown that osteoblasts are a major site of niche-mediated LSC resistance against second- and third-generation tyrosine kinase inhibitors (TKI) in CML. In the present study, we screened for drugs that are capable of suppressing the growth and viability of osteoblasts and/or other niche cells and can thereby overcome TKI resistance of CML LSC. Proliferation was analyzed by determining 3H-thymidine uptake in niche-related cells, and apoptosis was measured by Annexin-V/DAPI-staining and flow cytometry. We found that the dual PI3 kinase (PI3K) and mTOR inhibitor BEZ235 and the selective pan-PI3K inhibitor copanlisib suppress proliferation of primary osteoblasts (BEZ235 IC50: 0.05 µM; copanlisib IC50: 0.05 µM), the osteoblast cell line CAL-72 (BEZ235 IC50: 0.5 µM; copanlisib IC50: 1 µM), primary umbilical vein-derived endothelial cells (BEZ235 IC50: 0.5 µM; copanlisib IC50: 0.5 µM), and the vascular endothelial cell line HMEC-1 (BEZ235 IC50: 1 µM; copanlisib IC50: 1 µM), whereas no comparable effects were seen with the mTOR inhibitor rapamycin. Furthermore, we show that BEZ235 and copanlisib cooperate with nilotinib and ponatinib in suppressing proliferation and survival of osteoblasts and endothelial cells. Finally, BEZ235 and copanlisib were found to overcome osteoblast-mediated resistance against nilotinib and ponatinib in K562 cells, KU812 cells and primary CD34+/CD38- CML LSC. Together, targeting osteoblastic niche cells through PI3K inhibition may be a new effective approach to overcome niche-induced TKI resistance in CML. Whether this approach can be translated into clinical application and can counteract drug resistance of LSC in patients with CML remains to be determined in clinical trials.

4.
Stem Cells Transl Med ; 9(11): 1331-1343, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32657052

RESUMO

Despite new insights in molecular features of leukemic cells and the availability of novel treatment approaches and drugs, acute myeloid leukemia (AML) remains a major clinical challenge. In fact, many patients with AML relapse after standard therapy and eventually die from progressive disease. The basic concept of leukemic stem cells (LSC) has been coined with the goal to decipher clonal architectures in various leukemia-models and to develop curative drug therapies by eliminating LSC. Indeed, during the past few years, various immunotherapies have been tested in AML, and several of these therapies follow the strategy to eliminate relevant leukemic subclones by introducing LSC-targeting antibodies or LSC-targeting immune cells. These therapies include, among others, new generations of LSC-eliminating antibody-constructs, checkpoint-targeting antibodies, bi-specific antibodies, and CAR-T or CAR-NK cell-based strategies. However, responses are often limited and/or transient which may be due to LSC resistance. Indeed, AML LSC exhibit multiple forms of resistance against various drugs and immunotherapies. An additional problems are treatment-induced myelotoxicity and other side effects. The current article provides a short overview of immunological targets expressed on LSC in AML. Moreover, cell-based therapies and immunotherapies tested in AML are discussed. Finally, the article provides an overview about LSC resistance and strategies to overcome resistance.


Assuntos
Imunoterapia/métodos , Leucemia Mieloide Aguda/terapia , Células-Tronco Neoplásicas/transplante , Medicina de Precisão/métodos , Humanos
5.
Cancers (Basel) ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326377

RESUMO

Janus kinase 2 (JAK2) and signal transducer and activator of transcription-5 (STAT5) play a key role in the pathogenesis of myeloproliferative neoplasms (MPN). In most patients, JAK2 V617F or CALR mutations are found and lead to activation of various downstream signaling cascades and molecules, including STAT5. We examined the presence and distribution of phosphorylated (p) STAT5 in neoplastic cells in patients with MPN, including polycythemia vera (PV, n = 10), essential thrombocythemia (ET, n = 15) and primary myelofibrosis (PMF, n = 9), and in the JAK2 V617F-positive cell lines HEL and SET-2. As assessed by immunohistochemistry, MPN cells displayed pSTAT5 in all patients examined. Phosphorylated STAT5 was also detected in putative CD34+/CD38- MPN stem cells (MPN-SC) by flow cytometry. Immunostaining experiments and Western blotting demonstrated pSTAT5 expression in both the cytoplasmic and nuclear compartment of MPN cells. Confirming previous studies, we also found that JAK2-targeting drugs counteract the expression of pSTAT5 and growth in HEL and SET-2 cells. Growth-inhibition of MPN cells was also induced by the STAT5-targeting drugs piceatannol, pimozide, AC-3-019 and AC-4-130. Together, we show that CD34+/CD38- MPN-SC express pSTAT5 and that pSTAT5 is expressed in the nuclear and cytoplasmic compartment of MPN cells. Whether direct targeting of pSTAT5 in MPN-SC is efficacious in MPN patients remains unknown.

6.
Sci Rep ; 7(1): 17498, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29235576

RESUMO

The mechanisms hallmarking melanoma progression are insufficiently understood. Here we studied the impact of the unfolded protein response (UPR) - a signalling cascade playing ambiguous roles in carcinogenesis - in melanoma malignancy. We identified isogenic patient-derived melanoma cell lines harboring BRAFV600E-mutations as a model system to study the role of intrinsic UPR in melanoma progression. We show that the activity of the three effector pathways of the UPR (ATF6, PERK and IRE1) was increased in metastatic compared to non-metastatic cells. Increased UPR-activity was associated with increased flexibility to cope with ER stress. The activity of the ATF6- and the PERK-, but not the IRE-pathway, correlated with poor survival in melanoma patients. Using whole-genome expression analysis, we show that the UPR is an inducer of FGF1 and FGF2 expression and cell migration. Antagonization of the UPR using the chemical chaperone 4-phenylbutyric acid (4-PBA) reduced FGF expression and inhibited cell migration and viability. Consistently, FGF expression positively correlated with the activity of ATF6 and PERK in human melanomas. We conclude that chronic UPR stimulates the FGF/FGF-receptor signalling axis and promotes melanoma progression. Hence, the development of potent chemical chaperones to antagonize the UPR might be a therapeutic approach to target melanoma.


Assuntos
Antineoplásicos/farmacologia , Butilaminas/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Progressão da Doença , Estresse do Retículo Endoplasmático/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanoma/genética , Camundongos , Mutação , Transplante de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
7.
Biochem Biophys Res Commun ; 479(3): 557-562, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27666478

RESUMO

Scavenger receptor class B, type I (SR-BI) is the main receptor for high-density lipoprotein (HDL) and an emerging atheroprotective candidate. A central function of SR-BI is the delivery of HDL-derived cholesterol to the liver for subsequent excretion into the bile. Here, we investigated the regulation of SR-BI by the unfolded protein response (UPR), an adaptive mechanism induced by endoplasmic reticulum (ER) stress, which is frequently activated in metabolic disorders. We provide evidence that induction of acute ER stress by well-characterized chemical inducers leads to decreased SR-BI expression in hepatocyte-derived cell lines. This results in a functional reduction of selective lipid uptake from HDL. However, the regulation of SR-BI by ER stress is not a direct consequence of altered cellular cholesterol metabolism. Finally, we show that SR-BI down-regulation by the UPR might be a compensatory mechanism to provide partial adaption to ER stress. The observed down-regulation of SR-BI by ER stress in hepatic cells might contribute to the unfavorable effects of metabolic disorders on cholesterol homeostasis and cardiovascular diseases.


Assuntos
Regulação da Expressão Gênica , Receptores Depuradores Classe B/metabolismo , Resposta a Proteínas não Dobradas , Doenças Cardiovasculares/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Colesterol/química , Regulação para Baixo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células Hep G2 , Hepatócitos/citologia , Homeostase , Humanos , Lipídeos/química , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA