Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
ACS Chem Neurosci ; 15(10): 2006-2017, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38683969

RESUMO

Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.


Assuntos
Comportamento Animal , Fenetilaminas , Peixe-Zebra , Animais , Fenetilaminas/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Masculino , Alucinógenos/farmacologia , Psicotrópicos/farmacologia , Serotonina/metabolismo , Dopamina/metabolismo
2.
Comput Biol Chem ; 110: 108061, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574417

RESUMO

Being widely accepted tools in computational drug search, the (Q)SAR methods have limitations related to data incompleteness. The proteochemometrics (PCM) approach expands the applicability area by using description for both protein and ligand structures. The PCM algorithms are urgently required for the development of new antiviral agents. We suggest the PCM method using the TLMNA descriptors, combining the MNA descriptors of ligands and protein sequence N-grams. Our method was validated on the viral chymotrypsin-like proteases and their ligands. We have developed an original protocol allowing us to collect a comprehensive set of 15 protein sequences and more than 9000 ligands from the ChEMBL database. The N-grams were derived from the 3D-based alignment, accurately superposing ligand-binding regions. In testing the ligand set in SAR mode with MNA descriptors, an accuracy above 0.95 was determined that shows the perspective of the antiviral drug search in virtual chemical libraries. The effective PCM models were built with the TLMNA descriptor. The strong validation procedure with pair exclusion simulated the prediction of interactions between the new ligands and new targets, resulting in accuracy estimation up to 0.89. The PCM approach shows slightly lower accuracy caused by more uncertainty compared with SAR, but it overcomes the problem of data incompleteness.


Assuntos
Antivirais , Inibidores de Proteases , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligantes , Antivirais/química , Antivirais/farmacologia , Algoritmos , Proteases Virais/química , Proteases Virais/metabolismo
3.
ACS Omega ; 8(48): 45774-45778, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075828

RESUMO

After the biotransformation of xenobiotics in the human body, the biological activity of the metabolites may differ from the activity of parent compounds. Therefore, to assess the overall biological activity of a drug-like compound, it is important to take into account its metabolites and their biological activity. We developed MetaTox 2.0-an updated version of the MetaTox web application that was able to predict the metabolites of xenobiotics. Innovations include estimating the biological activity profile of a compound and taking into account its metabolites. The estimation is based on the PASS (prediction of activity spectra for substances) algorithm and on the latest version of the training set covering over 1900 biological activities predicted with an average accuracy exceeding 0.97. Also, MetaTox 2.0 allows the search for similar substances among more than 2000 drugs with known metabolic networks, which were extracted from the ChEMBL, MetXBIODB, and DrugBank databases. MetaTox 2.0 is freely available on the web at https://www.way2drug.com/metatox.

4.
Viruses ; 15(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005921

RESUMO

Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Teorema de Bayes , Substituição de Aminoácidos , Reprodutibilidade dos Testes , Transcriptase Reversa do HIV/genética , Inibidores da Transcriptase Reversa/farmacologia , Infecções por HIV/tratamento farmacológico , Farmacorresistência Viral/genética , Protease de HIV/genética
5.
J Chem Inf Model ; 63(21): 6463-6468, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37871298

RESUMO

The metagenome of bacteria colonizing the human intestine is a set of genes that is almost 150 times greater than the set of host genes. Some of these genes encode enzymes whose functioning significantly expands the number of potential pathways for xenobiotic metabolism. The resulting metabolites can exhibit activity different from that of the parent compound. This can decrease the efficacy of pharmacotherapy as well as induce undesirable and potentially life-threatening side effects. Thus, analysis of the biotransformation of small drug-like compounds mediated by the gut microbiota is an important step in the development of new pharmaceutical agents and repurposing of the approved drugs. In vitro research, the interaction of drug-like compounds with the gut microbiota is a multistep and time-consuming process. Systematic testing of large sets of chemical structures is associated with a number of challenges, including the lack of standardized techniques and significant financial costs to identify the structure of the final metabolites. Estimation of the compounds' ability to be biotransformed by the gut microbiota and prediction of the structures of their metabolites are possible in silico. However, the development of computational approaches is limited by the lack of information about chemical structures metabolized by microbiota enzymes. The aim of this study is to create a database containing information on the metabolism of drug-like compounds by the gut microbiota. We created the data set containing information about 368 structures metabolized and 310 structures not metabolized by the human gut microbiota. The HGMMX database is freely available at https://www.way2drug.com/hgmmx. The information presented will be useful in the development of computational approaches for analyzing the impact of the human microbiota on metabolism of drug-like molecules.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Xenobióticos/química , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Biotransformação , Bases de Dados Factuais
6.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37535750

RESUMO

MOTIVATION: Next Generation Sequencing technologies make it possible to detect rare genetic variants in individual patients. Currently, more than a dozen software and web services have been created to predict the pathogenicity of variants related with changing of amino acid residues. Despite considerable efforts in this area, at the moment there is no ideal method to classify pathogenic and harmless variants, and the assessment of the pathogenicity is often contradictory. In this article, we propose to use peptides structural formulas of proteins as an amino acid residues substitutions description, rather than a single-letter code. This allowed us to investigate the effectiveness of chemoinformatics approach to assess the pathogenicity of variants associated with amino acid substitutions. RESULTS: The structure-activity relationships analysis relying on protein-specific data and atom centric substructural multilevel neighborhoods of atoms (MNA) descriptors of molecular fragments appeared to be suitable for predicting the pathogenic effect of single amino acid variants. MNA-based Naïve Bayes classifier algorithm, ClinVar and humsavar data were used for the creation of structure-activity relationships models for 10 proteins. The performance of the models was compared with 11 different predicting tools: 8 individual (SIFT 4G, Polyphen2 HDIV, MutationAssessor, PROVEAN, FATHMM, MVP, LIST-S2, MutPred) and 3 consensus (M-CAP, MetaSVM, MetaLR). The accuracy of MNA-based method varies for the proteins (AUC: 0.631-0.993; MCC: 0.191-0.891). It was similar for both the results of comparisons with the other individual predictors and third-party protein-specific predictors. For several proteins (BRCA1, BRCA2, COL1A2, and RYR1), the performance of the MNA-based method was outstanding, capable of capturing the pathogenic effect of structural changes in amino acid substitutions. AVAILABILITY AND IMPLEMENTATION: The datasets are available as supplemental data at Bioinformatics online. A python script to convert amino acid and nucleotide sequences from single-letter codes to SD files is available at https://github.com/SmirnygaTotoshka/SequenceToSDF. The authors provide trial licenses for MultiPASS software to interested readers upon request.


Assuntos
Aminoácidos , Proteínas , Humanos , Substituição de Aminoácidos , Teorema de Bayes , Proteínas/química , Aminoácidos/genética , Biologia Computacional/métodos
7.
J Chem Inf Model ; 63(7): 1847-1851, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36995916

RESUMO

Medicinal plants growing in Russia are a rich source of biologically active compounds. However, the evaluation of the hidden pharmacological potential of these compounds by in silico methods is complicated by the lack of specialized databases. We have created a database of 3128 phytocomponents from 268 medical plants included in the Russian Pharmacopoeia. The information about the compounds was supplemented with their physical-chemical characteristics and biological activity profiles estimated using the PASS software. Comparison with phytocomponents of medicinal plants from five other countries showed that the similarity of phytocomponents in our database is rather small. The uniqueness of the contents significantly enriches and provides easy access to the necessary information. The Phyto4Health data are freely available at http://www.way2drug.com/p4h/.


Assuntos
Plantas Medicinais , Software , Plantas Medicinais/química , Bases de Dados Factuais , Federação Russa
8.
Immunology ; 169(4): 447-453, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929656

RESUMO

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.com/TCR-pred/) to predict the interactions between α chain CDR3 TCR sequences and 116 epitopes or 25 MHC types, as well as the interactions between ß chain CDR3 TCR sequences and 202 epitopes or 28 MHC types. The TCR-Pred web application is based on the data (more 250 000 unique CDR3 TCR sequences) from VDJdb, McPAS-TCR, and IEDB databases and the proposed approach. The average AUC values of the prediction accuracy calculated using a 20-fold cross-validation procedure varies from 0.857 to 0.884. The created web application may be useful in studies related with T-cell profiling based on CDR3 TCR sequences.


Assuntos
Software , Linfócitos T , Epitopos , Teorema de Bayes , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta
9.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768784

RESUMO

Next Generation Sequencing (NGS) technologies are rapidly entering clinical practice. A promising area for their use lies in the field of newborn screening. The mass screening of newborns using NGS technology leads to the discovery of a large number of new missense variants that need to be assessed for association with the development of hereditary diseases. Currently, the primary analysis and identification of pathogenic variations is carried out using bioinformatic tools. Although extensive efforts have been made in the computational approach to variant interpretation, there is currently no generally accepted pathogenicity predictor. In this study, we used the sequence-structure-property relationships (SSPR) approach, based on the representation of protein fragments by molecular structural formula. The approach predicts the pathogenic effect of single amino acid substitutions in proteins related with twenty-five monogenic heritable diseases from the Uniform Screening Panel for Major Conditions recommended by the Advisory Committee on Hereditary Disorders in Newborns and Children. In order to create SSPR models of classification, we modified a piece of cheminformatics software, MultiPASS, that was originally developed for the prediction of activity spectra for drug-like substances. The created SSPR models were compared with traditional bioinformatic tools (SIFT 4G, Polyphen-2 HDIV, MutationAssessor, PROVEAN and FATHMM). The average AUC of our approach was 0.804 ± 0.040. Better quality scores were achieved for 15 from 25 proteins with a significantly higher accuracy for some proteins (IVD, HADHB, HBB). The best SSPR models of classification are freely available in the online resource SAV-Pred (Single Amino acid Variants Predictor).


Assuntos
Triagem Neonatal , Software , Recém-Nascido , Criança , Humanos , Substituição de Aminoácidos , Mutação de Sentido Incorreto , Biologia Computacional
10.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674980

RESUMO

Viruses cause various infections that may affect human lifestyle for durations ranging from several days to for many years. Although preventative and therapeutic remedies are available for many viruses, they may still have a profound impact on human life. The human immunodeficiency virus type 1 is the most common cause of HIV infection, which represents one of the most dangerous and complex diseases since it affects the immune system and causes its disruption, leading to secondary complications and negatively influencing health-related quality of life. While highly active antiretroviral therapy may decrease the viral load and the velocity of HIV infection progression, some individual peculiarities may affect viral load control or the progression of T-cell malfunction induced by HIV. Our study is aimed at the text-based identification of molecular mechanisms that may be involved in viral infection progression, using HIV as a case study. Specifically, we identified human proteins and genes which commonly occurred, overexpressed or underexpressed, in the collections of publications relevant to (i) HIV infection progression and (ii) acute and chronic stages of HIV infection. Then, we considered biological processes that are controlled by the identified protein and genes. We verified the impact of the identified molecules in the associated clinical study.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Qualidade de Vida , Terapia Antirretroviral de Alta Atividade , Mineração de Dados , Carga Viral
11.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675202

RESUMO

In vitro cell-line cytotoxicity is widely used in the experimental studies of potential antineoplastic agents and evaluation of safety in drug discovery. In silico estimation of cytotoxicity against hundreds of tumor cell lines and dozens of normal cell lines considerably reduces the time and costs of drug development and the assessment of new pharmaceutical agent perspectives. In 2018, we developed the first freely available web application (CLC-Pred) for the qualitative prediction of cytotoxicity against 278 tumor and 27 normal cell lines based on structural formulas of 59,882 compounds. Here, we present a new version of this web application: CLC-Pred 2.0. It also employs the PASS (Prediction of Activity Spectra for Substance) approach based on substructural atom centric MNA descriptors and a Bayesian algorithm. CLC-Pred 2.0 provides three types of qualitative prediction: (1) cytotoxicity against 391 tumor and 47 normal human cell lines based on ChEMBL and PubChem data (128,545 structures) with a mean accuracy of prediction (AUC), calculated by the leave-one-out (LOO CV) and the 20-fold cross-validation (20F CV) procedures, of 0.925 and 0.923, respectively; (2) cytotoxicity against an NCI60 tumor cell-line panel based on the Developmental Therapeutics Program's NCI60 data (22,726 structures) with different thresholds of IG50 data (100, 10 and 1 nM) and a mean accuracy of prediction from 0.870 to 0.945 (LOO CV) and from 0.869 to 0.942 (20F CV), respectively; (3) 2170 molecular mechanisms of actions based on ChEMBL and PubChem data (656,011 structures) with a mean accuracy of prediction 0.979 (LOO CV) and 0.978 (20F CV). Therefore, CLC-Pred 2.0 is a significant extension of the capabilities of the initial web application.


Assuntos
Antineoplásicos , Software , Humanos , Teorema de Bayes , Antineoplásicos/farmacologia , Antineoplásicos/química , Prednisona , Linhagem Celular Tumoral
12.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144612

RESUMO

Human cytochrome P450 enzymes (CYPs) are heme-containing monooxygenases. This superfamily of drug-metabolizing enzymes is responsible for the metabolism of most drugs and other xenobiotics. The inhibition of CYPs may lead to drug-drug interactions and impair the biotransformation of drugs. CYP inducers may decrease the bioavailability and increase the clearance of drugs. Based on the freely available databases ChEMBL and PubChem, we have collected over 70,000 records containing the structures of inhibitors and inducers together with the IC50 values for the inhibitors of the five major human CYPs: 1A2, 3A4, 2D6, 2C9, and 2C19. Based on the collected data, we developed (Q)SAR models for predicting inhibitors and inducers of these CYPs using GUSAR and PASS software. The developed (Q)SAR models could be applied for assessment of the interaction of novel drug-like substances with the major human CYPs. The created (Q)SAR models demonstrated reasonable accuracy of prediction. They have been implemented in the web application P450-Analyzer that is freely available via the Internet.


Assuntos
Sistema Enzimático do Citocromo P-450 , Xenobióticos , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Heme , Humanos , Microssomos Hepáticos/metabolismo , Isoformas de Proteínas
13.
Comput Biol Chem ; 98: 107674, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430543

RESUMO

Prediction of protein-ligand interaction is necessary for drug design, gene regulatory networks investigation, and chemical probes detection. The existing methods commonly demonstrate high prediction accuracy for the particular groups of protein and their ligands. We developed an approach suited for the wider applicability and tested it on three dataset types significantly differing by protein homology. The study included three typical scenarios of assessing the target-ligand interaction: 1st - predicting protein targets by ligand structures' comparisons; 2nd - predicting ligands by target sequences' comparisons; 3rd - predicting both the uncharacterized targets and ligands with the fuzzy coefficients based on ligand comparisons. The 1st scenario implemented showed a high prediction accuracy of 0.96-0.99, providing fuzzy coefficients of target-ligand interactions in the 3rd scenario. Testing by 2nd scenario displayed the accuracy of 0.97-0.99 for predicting within the particular protein families, sets non-ordered by protein homology, and accuracy higher than 0.90 for most HIV sets, each presenting the close mutant proteins differing by point substitutions. The 3rd scenario displayed that fuzzy classification can reveal reasonable accuracy 0.86-0.94 at simulated data incompleteness. Thus, our approach provides high prediction accuracy with the wide applicability domain, including data differing in heterogeneity and completeness.


Assuntos
Desenho de Fármacos , Proteínas , Sítios de Ligação , Ligantes , Ligação Proteica , Proteínas/química
14.
Chem Res Toxicol ; 35(3): 402-411, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35172101

RESUMO

Assessment of structure-activity relationships (SARs) for predicting severe drug-induced liver injury (DILI) is essential since in vivo and in vitro preclinical methods cannot detect many druglike compounds disrupting liver functions. To date, plenty of SAR models for the prediction of DILI have been developed; however, none of them considered the route of drug administration and daily dose, which may introduce significant bias into prediction results. We have created a dataset of 617 drugs with parenteral and oral administration routes and consistent information on DILI severity. We have found a clear relationship between route, dose, and DILI severity. According to SAR, nearly 40% of moderate- and non-DILI-causing drugs would cause severe DILI if they were administered at high oral doses. We have proposed the following approach to predict severe DILI. New compounds recommended to be used at low oral doses (<∼10 mg daily), or parenterally, can be considered not causing severe DILI. DILI for compounds administered at medium oral doses (∼10-100 mg daily; 22.2% of drugs under consideration) can be considered unpredictable because reasonable SAR models were not obtained due to the small size and heterogeneity of the corresponding dataset. The DILI potential of the compounds recommended to be used at high oral doses (more than ∼100 mg daily) can be estimated using SAR modeling. The balanced accuracy of the approach calculated by a 10-fold cross-validation procedure is 0.803. The developed approach can be used to estimate severe DILI for druglike compounds proposed to use at low and high oral doses or parenterally at the early stages of drug development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Administração Oral , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Técnicas In Vitro , Preparações Farmacêuticas/química
15.
Comput Struct Biotechnol J ; 19: 2447-2459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025935

RESUMO

Cytotoxic and noncytotoxic CD8+ T lymphocyte responses are essential for the control of HIV infection. Understanding the mechanisms underlying HIV control in elite controllers (ECs), which maintain undetectable viral load in the absence of antiretroviral therapy, may facilitate the development of new effective therapeutic strategies. We developed an original pipeline for an analysis of the transcriptional profiles of CD8+ cells from ECs, treated and untreated progressors. Hierarchical cluster analysis of CD8+ cells' transcription profiles allowed us to identify five distinct groups (EC groups 1-5) of ECs. The transcriptional profiles of EC group 1 were opposite to those of groups 2-4 and similar to those of the treated progressors, which can be associated with residual activation and dysfunction of CD8+ T-lymphocytes. The profiles of groups 2-4 were associated with different numbers of differentially expressed genes compared to healthy controls, but the corresponding genes shared the same cellular processes. These three groups were associated with increased metabolism, survival, proliferation, and the absence of an "exhausted" phenotype, compared to both untreated progressors and healthy controls. The CD8+ lymphocytes from these groups of ECs may contribute to the control under HIV replication and slower disease progression. The EC group 5 was indistinguishable from normal. Application of master regulator analysis allowed us to identify 22 receptors, including interferon-gamma, interleukin-2, and androgen receptors, which may be responsible for the observed expression changes and the functional states of CD8+ cells from ECs. These receptors can be considered potential targets of therapeutic intervention, which may decelerate disease progression.

16.
Pharmaceutics ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924315

RESUMO

Drug-drug interactions (DDIs) can cause drug toxicities, reduced pharmacological effects, and adverse drug reactions. Studies aiming to determine the possible DDIs for an investigational drug are part of the drug discovery and development process and include an assessment of the DDIs potential mediated by inhibition or induction of the most important drug-metabolizing cytochrome P450 isoforms. Our study was dedicated to creating a computer model for prediction of the DDIs mediated by the seven most important P450 cytochromes: CYP1A2, CYP2B6, CYP2C19, CYP2C8, CYP2C9, CYP2D6, and CYP3A4. For the creation of structure-activity relationship (SAR) models that predict metabolism-mediated DDIs for pairs of molecules, we applied the Prediction of Activity Spectra for Substances (PASS) software and Pairs of Substances Multilevel Neighborhoods of Atoms (PoSMNA) descriptors calculated based on structural formulas. About 2500 records on DDIs mediated by these cytochromes were used as a training set. Prediction can be carried out both for known drugs and for new, not-yet-synthesized substances. The average accuracy of the prediction of DDIs mediated by various isoforms of cytochrome P450 estimated by leave-one-out cross-validation (LOO CV) procedures was about 0.92. The SAR models created are publicly available as a web resource and provide predictions of DDIs mediated by the most important cytochromes P450.

17.
J Chem Inf Model ; 61(4): 1683-1690, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33724829

RESUMO

The growing amount of experimental data on chemical objects includes properties of small molecules, results of studies of their interaction with human and animal proteins, and methods of synthesis of organic compounds (OCs). The data obtained can be used to identify the names of OCs automatically, including all possible synonyms and relevant data on the molecular properties and biological activity. Utilization of different synonymic names of chemical compounds allows researchers to increase the completeness of data on their properties available from publications. Enrichment of the data on the names of chemical compounds by information about their possible metabolites can help estimate the biological effects of parent compounds and their metabolites more thoroughly. Therefore, an attempt at automated extraction of the names of parent compounds and their metabolites from the texts is a rather important task. In our study, we aimed at developing a method that provides the extraction of the named entities (NEs) of parent compounds and their metabolites from abstracts of scientific publications. Based on the application of the conditional random fields' algorithm, we extracted the NEs of chemical compounds. We developed a set of rules allowing identification of parent compound NEs and their metabolites in the texts. We evaluated the possibility of extracting the names of potential metabolites based on cosine similarity between strings representing names of parent compounds and all other chemical NEs found in the text. Additionally, we used conditional random fields to fetch the names of parent compounds and their metabolites from the texts based on the corpus of texts labeled manually. Our computational experiments showed that usage of rules in combination with cosine similarity could increase the accuracy of recognition of the names of metabolites compared to the rule-based algorithm and application of a machine-learning algorithm (conditional random fields).


Assuntos
Algoritmos , Proteínas , Animais , Humanos , Aprendizado de Máquina
18.
Mol Inform ; 40(4): e2000231, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33191610

RESUMO

Most drug-like compounds can interact with several pharmacological targets and exhibit complex biological activity spectra. Analysis of these spectra helps find and optimize new pharmaceutical agents or identify new uses for approved and investigational drugs (drug repurposing). Since most pharmaceuticals usually undergo biotransformation in the human body, it is reasonable during drug discovery to take into account biological activity spectra of metabolites. A new freely available MetaPASS web application (http://www.way2drug.com/metapass) has been developed for analyzing the probable biological activity spectra of drug-like organic compounds taking into account their metabolites - integrated activity profile. To obtain an integrated biological activity profile, one can create a biotransformation network for any compound or analyze known networks for more than 950 compounds from ChEBML and DrugBank. Biological activity profile prediction is based on the PASS Refined software that predicts 1,333 biological activities with an average accuracy (IAP, calculated by leave-one-out cross-validation procedure) exceeded 0.97.


Assuntos
Biotransformação , Compostos Orgânicos/análise , Compostos Orgânicos/metabolismo , Software
19.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142754

RESUMO

Computationally predicting the interaction of proteins and ligands presents three main directions: the search of new target proteins for ligands, the search of new ligands for targets, and predicting the interaction of new proteins and new ligands. We proposed an approach providing the fuzzy classification of protein sequences based on the ligand structural features to analyze the latter most complicated case. We tested our approach on five protein groups, which represented promised targets for drug-like ligands and differed in functional peculiarities. The training sets were built with the original procedure overcoming the data ambiguity. Our study showed the effective prediction of new targets for ligands with an average accuracy of 0.96. The prediction of new ligands for targets displayed the average accuracy 0.95; accuracy estimates were close to our previous results, comparable in accuracy to those of other methods or exceeded them. Using the fuzzy coefficients reflecting the target-to-ligand specificity, we provided predicting interactions for new proteins and new ligands; the obtained accuracy values from 0.89 to 0.99 were acceptable for such a sophisticated task. The protein kinase family case demonstrated the ability to account for subtle features of proteins and ligands required for the specificity of protein-ligand interaction.


Assuntos
Algoritmos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Conformação Proteica , Proteínas/química , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica
20.
Inorg Chem ; 59(22): 16225-16237, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33137251

RESUMO

A new monoclinic α-polymorph of the Na2FePO4F fluoride-phosphate has been directly synthesized via a hydrothermal method for application in metal-ion batteries. The crystal structure of the as-prepared α-Na2FePO4F studied with powder X-ray and neutron diffraction (P21/c, a = 13.6753(10) Å, b = 5.2503(2) Å, c = 13.7202(8) Å, ß = 120.230(4)°) demonstrates strong antisite disorder between the Na and Fe atoms. As revealed with DFT-based calculations, α-Na2FePO4F has low migration barriers for Na+ along the main pathway parallel to the b axis, and an additional diffusion bypass allowing the Na+ cations to go around the Na/Fe antisite defects. These results corroborate with the extremely high experimental Na-ion diffusion coefficient of (1-5)·10-11 cm2·s-1, which is 2 orders of magnitude higher than that for the orthorhombic ß-polymorph ((5-10)·10-13 cm2·s-1). Being tested as a cathode material in Na- and Li-ion battery cells, monoclinic α-Na2FePO4F exhibits a reversible specific capacity of 90 and 80 mAh g-1, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA