Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 839: 156346, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640745

RESUMO

Soil and water conservation practices are key to agroecosystems sustainability and avoiding diffuse pollution. Here, we compare the impacts of different types of mulch, barley straw (Straw), wooden chips (Chip) and tillage (Till) on vegetation mulch cover (VMC); soil properties, bulk density (BD), mean weight diameter (MWD), water stable aggregates (WSA), soil water content (SWC), soil organic matter (SOM), pH and total phosphorous (P), potassium (K), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), Zinc (Zn) and lead (Pb). We also assessed the ponding time (PT), runoff time (RT), runoff, sediment concentration (SC), sediment loss (SL) and chemicals transport (the same studied in soil). A set of rainfall simulation experiments (90 in total) was applied in the different Spring, Summer, and Fall treatments. The results showed that mulch increased VMC in all the seasons, while other properties (BD; MWD, WSA SOM, pH) were not affected, especially in Spring. The biggest impact was observed in Fall, especially in the Till plot, due to the tillage practices applied in Summer. Mulch increased PT, RT and reduced runoff, SL and chemicals transport. Chemical losses were very much associated with SL, and the concentration of P and metals in soil depended on soil Ca and pH. SWC, MWD and runoff were inversely related to PT, RT and SC. Finally, BD, VMC and SOM were highly associated. Overall, tillage practices dramatically impact SL, and diffuse pollution and urgent measures are needed to reverse this. Mulching is excellent and cost-effective to mitigate the impacts of agriculture on land degradation and diffuse pollution.


Assuntos
Corylus , Solo , Agricultura/métodos , Croácia , Estações do Ano , Solo/química , Água
2.
Plants (Basel) ; 10(6)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204700

RESUMO

To test an assumption that organic soil can ameliorate nutritional disorders associated with metal and salinity stresses, we exposed salt-sensitive strawberry and lettuce to four salinity (0-60 mM NaCl) and three contamination (0.3-5 mg Cd/kg) rates in peat (pHH2O = 5.5). The results showed that, even at 20 mM NaCl, salinity stress exerted a dominant effect on rhizosphere biogeochemistry and physiological processes, inducing leaf-edge burns, chlorosis/necrosis, reducing vegetative growth in crops; at ≥40 mM, NaCl mortality was induced in strawberry. Signifiacntly decreased K/Na, Ca/Na and Mg/Na concentration ratios with raising salinity were confirmed in all tissues. The combined CdxNaCl stresses (vs. control) increased leaf Cd accumulation (up to 42-fold in lettuce and 23-fold in strawberry), whereas NaCl salinity increased the accumulation of Zn (>1.5-fold) and Cu (up to 1.2-fold) in leaves. Lettuce accumulated the toxic Cd concentration (up to 12.6 mg/kg) in leaves, suggesting the strong root-to-shoot transport of Cd. In strawberry Cd, concentration was similar (and sub-toxic) in fruits and leaves, 2.28 and 1.86 mg/kg, respectively, suggesting lower Cd root-to-shoot translocation, and similar Cd mobility in the xylem and phloem. Additionally, the accumulation of Cd in strawberry fruits was exacerbated at high NaCl exposure (60 mM) compared with lower NaCl concentrations. Thus, in salinized, slightly acidic and organically rich rhizosphere, pronounced organo- and/or chloro-complexation likely shifted metal biogeochemistry toward increased mobility and phytoavailability (with metal adsorption restricted due to Na+ oversaturation of the caton exchange complex in the substrate), confirming the importance of quality water and soils in avoiding abiotic stresses and producing non-contaminated food.

3.
J Environ Manage ; 293: 112955, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102505

RESUMO

This study set out to evaluate the effect of using sewage sludge-derived compost (SSC) or biochar (SSB) as a soil amendment on the phytoaccumulation of potentially toxic elements, PTE (Cd, Cr, Cu, Ni, Pb, Zn) and natural radionuclides (238U and 232Th) by Chinese cabbage (Brassica rapa L. subsp. pekinensis (Lour.) Hanelt) in terra rossa and rendzina soils, which are the two common soil types in Croatia. The experiment consisted of a greenhouse pot trial using a three-factor design where soil type, sludge post-stabilisation procedure and amendment rate (12 and 120 mgP/L) were the main factors. At harvest, the concentrations of analytes in the substrate, leaves and roots were measured, from which the edible tissue uptake (ETU) and concentration ratios (CR) were determined. Also, the average daily dose (ADD) and hazard quotient (HQ) were determined to assess the health risk, as well as soil contamination factor (CF). The results showed that neither adding SSC nor SSB affected the soil loading at the rates applied, suggesting a low risk of soil contamination (CF ≤ 1). The ETU of Cd, Cu, and Zn were 0.0061, 1.23, and 0.91 mg/plant from compost-amended soil and 0.0046, 0.78 and 0.65 mg/plant for biochar-amended soil, respectively. This difference suggests that their ETU was higher in compost-amended soils than in soils treated with biochar. The CR data indicate that the bioavailability of Cu (CR of 5.30) is highest at an amendment rate of 12 mgP/L, while for Zn (CR of 0.69), the highest bioaccumulation was observed with an amendment rate of 120 mgP/L. Translocation of Cr, Ni, Pb and 238U to the leaves was limited. Overall, the HQ (<1) for Cd, Cu and Zn in the edible parts confirmed that consuming Chinese cabbage does not threaten human health. Similarly, the daily intake of 232Th remained below the limit (3 µg) set by ICRP, suggesting no radiological risk. Finally, although the amendment rate, which was 10-times the amount stipulated in Croatian regulation and the CR ranged from 0.007 to 5.30, the precautionary principle is advised, and the long-term impact of sewage sludge derived compost or biochar on different plant groups (incl. root vegetables) at the field-scale is recommended.


Assuntos
Brassica , Compostagem , Metais Pesados , Poluentes do Solo , Carvão Vegetal , China , Croácia , Humanos , Metais Pesados/análise , Radioisótopos , Esgotos , Solo , Poluentes do Solo/análise
4.
Sci Total Environ ; 753: 141902, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207459

RESUMO

One of negative side-effects of usage of bio-renewables might be generation of mineral (ash) material, potential source of environmental pollution. A hypothesis was that bottom ash (BA; from biomass cogeneration facility) could be efficiently (re) used in soil chemical conditioning similarly to widely-used dolomite-based soil conditioner (DO; from Croatian Dinaric-coastal region) which we tested by: i) physicochemical characterisation of BA and DO, and ii) bioassay with Raphanus sativus cultivated in acidic soil amended with BA or DO. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) confirmed complex chemical/physical structures and morphology between amendments, X-ray diffraction (XRD) showed their distinctive mineralogy with predominantly dolomite (in DO) vs. quartz and calcite (in BA), while secondary ion mass spectrometry (SIMS) revealed their diverse elemental/isotopic composition. The BA or DO amendments ameliorated soil acidity, increased available P, K and most other nutrients, but not Cd. The BA or DO amendments improved vegetative growth and edible hypocotyl yield. However, both amendments also increased Cd accumulation in all radish tissues, which was unexpected given the alkaline matrix of bio-ash and dolomite that would be likely to facilitate retention and immobilisation of toxic Cd. Thus, thorough characterisation and evaluation of BA- and/or DO-based materials and relevant soils (with an emphasis on metal sorption/immobilisation) prior to application in (agro) ecosystems is crucial for producing food clean of toxic metals.


Assuntos
Raphanus , Poluentes do Solo , Biomassa , Cádmio/análise , Carbonato de Cálcio , Cinza de Carvão , Ecossistema , Magnésio , Nutrientes , Solo , Poluentes do Solo/análise
5.
J Environ Qual ; 49(4): 1011-1019, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33016487

RESUMO

The pharmaceutical compound carbamazepine (CBZ) is a contaminant of emerging concern. Wastewater irrigation can be a long-term, frequent source of CBZ; therefore, understanding the fate and transport of CBZ as a result of wastewater reuse practices has important environmental implications. The objective of this study was to estimate long-term soil transport of CBZ originating from treated wastewater irrigation on plots under different land uses. Field data from a previous study comparing CBZ concentrations in soil under different land uses were used in numerical modeling with HYDRUS-2D for the estimation of CBZ soil transport during 20 yr of irrigation with treated wastewater. This study showed high CBZ retention in soil under all investigated land uses. Adequate modeling results were obtained by using soil organic carbon-water partitioning coefficient (Koc ) for the CBZ linear sorption coefficient (Kd ) estimation, yet an underestimation of CBZ concentration in soil was still noted. Thus, results suggest that, although highly important, organic carbon content is probably not the only soil property governing CBZ sorption at this site, indicating the potential research perspective. Modeling results showed wastewater irrigation containing CBZ for 20 yr increased the CBZ concentration in the soil profile and its vertical movement, with the slowest vertical transport rate occurring on the forested plots. Overall results suggest that a beneficial management practice could be to increase soil organic carbon (e.g., compost addition) when using treated wastewater for irrigation in order to retain CBZ in the surface soil and thus limit its leaching through the soil profile.


Assuntos
Poluentes do Solo/análise , Águas Residuárias , Carbamazepina/análise , Carbono , Solo , Eliminação de Resíduos Líquidos
7.
Waste Manag ; 94: 27-38, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279393

RESUMO

This study assesses the potential use of different types of stabilized sewage sludge as a soil amendment by considering their physicochemical characteristics, nutritional status, and their trace metal and radionuclide content. The concentrations of trace metals and radionuclides were determined using ICP-OES and gamma-ray spectrometry, respectively. For determining nutritional status and chemical characterization, this study followed standard ISO-recommended procedures. Data analysis revealed that anaerobic sludge contains higher concentrations of Cr, Hg, and Ni compared to aerobic and non-biologically stabilized sludge. A similar observation was observed in the case of 226Ra, 210Pb, 228Ra, and 228Th. Furthermore, the high levels of P and N in aerobic sludge suggest that biologically stabilized sludge has the potential to be a good fertilizer. In addition, the study finds strong evidence that nutrients are involved in the adsorption of metals and radionuclides onto sludge biomass. Overall, eight of the nine studied sludge samples are safe for agricultural use since the concentrations of trace metals fall well below the limits set by Croatian legislation (NN 38/08). In addition, the levels of radionuclides do not pose a radiological risk. This means that soil conditioning with sewage sludge remains a viable strategy for nutrient recovery from municipal waste, although long-term impact assessments of repeated applications are necessary.


Assuntos
Metais Pesados , Poluentes do Solo , Agricultura , Fertilizantes , Esgotos , Solo
8.
Glob Chang Biol ; 25(6): 1895-1904, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900360

RESUMO

Although only representing 0.05% of global freshwater, or 0.001% of all global water, soil water supports all terrestrial biological life. Soil moisture behaviour in most models is constrained by hydraulic parameters that do not change. Here we argue that biological feedbacks from plants, macro-fauna and the microbiome influence soil structure, and thus the soil hydraulic parameters and the soil water content signals we observe. Incorporating biological feedbacks into soil hydrological models is therefore important for understanding environmental change and its impacts on ecosystems. We anticipate that environmental change will accelerate and modify soil hydraulic function. Increasingly, we understand the vital role that soil moisture exerts on the carbon cycle and other environmental threats such as heatwaves, droughts and floods, wildfires, regional precipitation patterns, disease regulation and infrastructure stability, in addition to agricultural production. Biological feedbacks may result in changes to soil hydraulic function that could be irreversible, resulting in alternative stable states (ASS) of soil moisture. To explore this, we need models that consider all the major feedbacks between soil properties and soil-plant-faunal-microbial-atmospheric processes, which is something we currently do not have. Therefore, a new direction is required to incorporate a dynamic description of soil structure and hydraulic property evolution into soil-plant-atmosphere, or land surface, models that consider feedbacks from land use and climate drivers of change, so as to better model ecosystem dynamics.


Assuntos
Retroalimentação , Água Subterrânea , Plantas/metabolismo , Solo/química , Ciclo do Carbono , Clima , Secas , Ecossistema , Meio Ambiente , Hidrologia
9.
Ecotoxicol Environ Saf ; 147: 824-831, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28968923

RESUMO

Although Cd availability depends on its total concentration in soil, it is ultimately defined by the processes which control its mobility, transformations and soil solution speciation. Cd mobility between different soil fractions can be significantly affected by certain pedovariables such as soil organic matter (SOM; over formation of metal-organic complexes) and/or soil salinity (over formation of metal-inorganic complexes). Phytoavailable Cd fraction may be described as the proportion of the available Cd in soil which is actually accessible by roots and available for plant uptake. Therefore, in a greenhouse pot experiment Cd availability was observed in the rhizosphere of faba bean exposed to different levels of SOM, NaCl salinity (50 and 100mM) and Cd contamination (5 and 10mgkg-1). Cd availability in soil does not linearly follow its total concentration. Still, increasing soil Cd concentration may lead to increased Cd phytoavailability if the proportion of Cd2+ pool in soil solution is enhanced. Reduced Cd (phyto)availability by raised SOM was found, along with increased proportion of Cd-DOC complexes in soil solution. Data suggest decreased Cd soil (phyto)availability with the application of salts. NaCl salinity affected Cd speciation in soil solution by promoting the formation of CdCln2-n complexes. Results possibly suggest that increased Cd mobility in soil does not result in its increased availability if soil adsorption capacity for Cd has not been exceeded. Accordingly, chloro-complex possibly operated just as a Cd carrier between different soil fractions and resulted only in transfer between solid phases and not in increased (phyto)availability.


Assuntos
Cádmio/análise , Substâncias Húmicas/análise , Salinidade , Poluentes do Solo/análise , Solo/química , Disponibilidade Biológica , Croácia , Modelos Teóricos , Raízes de Plantas/química , Rizosfera , Cloreto de Sódio/análise , Vicia faba/química
10.
Sci Total Environ ; 499: 546-59, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24958010

RESUMO

Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy.


Assuntos
Agricultura/métodos , Monitoramento Ambiental/métodos , Herbicidas/análise , Modelos Químicos , Compostos de Fenilureia/análise , Poluentes do Solo/análise , Solo/química , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA