Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775144

RESUMO

Clostridioides (formerly Clostridium) difficile is a leading cause of infectious diarrhea associated with antibiotic therapy. The ability of this anaerobic pathogen to acquire enough iron to proliferate under iron limitation conditions imposed by the host largely determines its pathogenicity. However, since high intracellular iron catalyzes formation of deleterious reactive hydroxyl radicals, iron uptake is tightly regulated at the transcriptional level by the ferric uptake regulator Fur. Several studies relate lacking a functional fur gene in C. difficile cells to higher oxidative stress sensitivity, colonization defect and less toxigenicity, although Fur does not appear to directly regulate either oxidative stress response genes or pathogenesis genes. In this work, we report the functional characterization of C. difficile Fur and describe an additional oxidation sensing Fur-mediated mechanism independent of iron, which affects Fur DNA-binding. Using electrophoretic mobility shift assays, we show that Fur binding to the promoters of fur, feoA and fldX genes, identified as iron and Fur-regulated genes in vivo, is specific and does not require co-regulator metal under reducing conditions. Fur treatment with H2O2 produces dose-dependent soluble high molecular weight species unable to bind to target promoters. Moreover, Fur oligomers are dithiotreitol sensitive, highlighting the importance of some interchain disulfide bond(s) for Fur oligomerization, and hence for activity. Additionally, the physiological electron transport chain NADPH-thioredoxin reductase/thioredoxin from Escherichia coli reduces inactive oligomerized C. difficile Fur that recovers activity. In conjunction with available transcriptomic data, these results suggest a previously underappreciated complexity in the control of some members of the Fur regulon that is based on Fur redox properties and might be fundamental for the adaptive response of C. difficile during infection.

2.
PLoS Biol ; 22(3): e3002546, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466754

RESUMO

Bacteria have developed fine-tuned responses to cope with potential zinc limitation. The Zur protein is a key player in coordinating this response in most species. Comparative proteomics conducted on the cyanobacterium Anabaena highlighted the more abundant proteins in a zur mutant compared to the wild type. Experimental evidence showed that the exoprotein ZepA mediates zinc uptake. Genomic context of the zepA gene and protein structure prediction provided additional insights on the regulation and putative function of ZepA homologs. Phylogenetic analysis suggests that ZepA represents a primordial system for zinc acquisition that has been conserved for billions of years in a handful of species from distant bacterial lineages. Furthermore, these results show that Zur may have been one of the first regulators of the FUR family to evolve, consistent with the scarcity of zinc in the ecosystems of the Archean eon.


Assuntos
Anabaena , Zinco , Zinco/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Filogenia , Anabaena/genética , Anabaena/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
mBio ; 15(3): e0323123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38334377

RESUMO

Microbial extracellular proteins and metabolites provide valuable information concerning how microbes adapt to changing environments. In cyanobacteria, dynamic acclimation strategies involve a variety of regulatory mechanisms, being ferric uptake regulator proteins as key players in this process. In the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, FurC (PerR) is a global regulator that modulates the peroxide response and several genes involved in photosynthesis and nitrogen metabolism. To investigate the possible role of FurC in shaping the extracellular environment of Anabaena, the analysis of the extracellular metabolites and proteins of a furC-overexpressing variant was compared to that of the wild-type strain. There were 96 differentially abundant proteins, 78 of which were found for the first time in the extracellular fraction of Anabaena. While these proteins belong to different functional categories, most of them are predicted to be secreted or have a peripheral location. Several stress-related proteins, including PrxA, flavodoxin, and the Dps homolog All1173, accumulated in the exoproteome of furC-overexpressing cells, while decreased levels of FurA and a subset of membrane proteins, including several export proteins and amiC gene products, responsible for nanopore formation, were detected. Direct repression by FurC of some of those genes, including amiC1 and amiC2, could account for odd septal nanopore formation and impaired intercellular molecular transfer observed in the furC-overexpressing variant. Assessment of the exometabolome from both strains revealed the release of two peptidoglycan fragments in furC-overexpressing cells, namely 1,6-anhydro-N-acetyl-ß-D-muramic acid (anhydroMurNAc) and its associated disaccharide (ß-D-GlcNAc-(1-4)-anhydroMurNAc), suggesting alterations in peptidoglycan breakdown and recycling.IMPORTANCECyanobacteria are ubiquitous photosynthetic prokaryotes that can adapt to environmental stresses by modulating their extracellular contents. Measurements of the organization and composition of the extracellular milieu provide useful information about cyanobacterial adaptive processes, which can potentially lead to biomimetic approaches to stabilizing biological systems to adverse conditions. Anabaena sp. strain PCC 7120 is a multicellular, nitrogen-fixing cyanobacterium whose intercellular molecular exchange is mediated by septal junctions that traverse the septal peptidoglycan through nanopores. FurC (PerR) is an essential transcriptional regulator in Anabaena, which modulates the response to several stresses. Here, we show that furC-overexpressing cells result in a modified exoproteome and the release of peptidoglycan fragments. Phenotypically, important alterations in nanopore formation and cell-to-cell communication were observed. Our results expand the roles of FurC to the modulation of cell-wall biogenesis and recycling, as well as in intercellular molecular transfer.


Assuntos
Anabaena , Peptidoglicano , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Anabaena/genética , Comunicação Celular , Nitrogênio/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Int J Biol Macromol ; 260(Pt 2): 129541, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244746

RESUMO

Haloferax mediterranei, an extreme halophilic archaeon thriving in hypersaline environments, has acquired significant attention in biotechnological and biochemical research due to its remarkable ability to flourish in extreme salinity conditions. Transcription factors, essential in regulating diverse cellular processes, have become focal points in understanding its adaptability. This study delves into the role of the Lrp transcription factor, exploring its modulation of glnA, nasABC, and lrp gene promoters in vivo through ß-galactosidase assays. Remarkably, our findings propose Lrp as the pioneering transcriptional regulator of nitrogen metabolism identified in a haloarchaeon. This study suggests its potential role in activating or repressing assimilatory pathway enzymes (GlnA and NasA). The interaction between Lrp and these promoters is analyzed using Electrophoretic Mobility Shift Assay and Differential Scanning Fluorimetry, highlighting l-glutamine's indispensable role in stabilizing the Lrp-DNA complex. Our research uncovers that halophilic Lrp forms octameric structures in the presence of l-glutamine. The study reveals the three-dimensional structure of the Lrp as a homodimer using X-ray crystallography, confirming this state in solution by Small-Angle X-ray Scattering. These findings illuminate the complex molecular mechanisms driving Hfx. mediterranei's nitrogen metabolism, offering valuable insights about its gene expression regulation and enriching our comprehension of extremophile biology.


Assuntos
Haloferax mediterranei , Haloferax mediterranei/genética , Glutamina/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Nitrogênio/metabolismo
5.
PLoS One ; 18(8): e0289761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37549165

RESUMO

FurC (PerR, Peroxide Response Regulator) from Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120) is a master regulator engaged in the modulation of relevant processes including the response to oxidative stress, photosynthesis and nitrogen fixation. Previous differential gene expression analysis of a furC-overexpressing strain (EB2770FurC) allowed the inference of a putative FurC DNA-binding consensus sequence. In the present work, more data concerning the regulon of the FurC protein were obtained through the searching of the putative FurC-box in the whole Anabaena sp. PCC 7120 genome. The total amount of novel FurC-DNA binding sites found in the promoter regions of genes with known function was validated by electrophoretic mobility shift assays (EMSA) identifying 22 new FurC targets. Some of these identified targets display relevant roles in nitrogen fixation (hetR and hgdC) and carbon assimilation processes (cmpR, glgP1 and opcA), suggesting that FurC could be an additional player for the harmonization of carbon and nitrogen metabolisms. Moreover, differential gene expression of a selection of newly identified FurC targets was measured by Real Time RT-PCR in the furC-overexpressing strain (EB2770FurC) comparing to Anabaena sp. PCC 7120 revealing that in most of these cases FurC could act as a transcriptional activator.


Assuntos
Anabaena , Nostoc , Regulon/genética , Nostoc/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/genética , Anabaena/genética , Anabaena/metabolismo , Regulação Bacteriana da Expressão Gênica
6.
Environ Microbiol ; 25(11): 2142-2162, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37315963

RESUMO

Zinc is required for the activity of many enzymes and plays an essential role in gene regulation and redox homeostasis. In Anabaena (Nostoc) sp. PCC7120, the genes involved in zinc uptake and transport are controlled by the metalloregulator Zur (FurB). Comparative transcriptomics of a zur mutant (Δzur) with the parent strain unveiled unexpected links between zinc homeostasis and other metabolic pathways. A notable increase in the transcription of numerous desiccation tolerance-related genes, including genes involved in the synthesis of trehalose and the transference of saccharide moieties, among many others, was detected. Biofilm formation analysis under static conditions revealed a reduced capacity of Δzur filaments to form biofilms compared to the parent strain, and such capacity was enhanced when Zur was overexpressed. Furthermore, microscopy analysis revealed that zur expression is required for the correct formation of the envelope polysaccharide layer in the heterocyst, as Δzur cells showed reduced staining with alcian blue compared to Anabaena sp. PCC7120. We suggest that Zur is an important regulator of the enzymes involved in the synthesis and transport of the envelope polysaccharide layer, influencing heterocyst development and biofilm formation, both relevant processes for cell division and interaction with substrates in its ecological niche.


Assuntos
Anabaena , Metais , Metais/metabolismo , Zinco/metabolismo , Homeostase , Polissacarídeos/metabolismo , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
7.
Microbiologyopen ; 12(3): e1355, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37379427

RESUMO

Lindane (γ-HCH) is an organochlorine pesticide that causes huge environmental concerns worldwide due to its recalcitrance and toxicity. The use of the cyanobacterium Anabaena sp. PCC 7120 in aquatic lindane bioremediation has been suggested but information relative to this process is scarce. In the present work, data relative to the growth, pigment composition, photosynthetic/respiration rate, and oxidative stress response of Anabaena sp. PCC 7120 in the presence of lindane at its solubility limit in water are shown. In addition, lindane degradation experiments revealed almost a total disappearance of lindane in the supernatants of Anabaena sp. PCC 7120 culture after 6 days of incubation. The diminishing in lindane concentration was in concordance with an increase in the levels of trichlorobenzene inside the cells. Furthermore, to identify potential orthologs of the linA, linB, linC, linD, linE, and linR genes from Sphingomonas paucimobilis B90A in Anabaena sp. PCC 7120, a whole genome screening was performed allowing the identification of five putative lin orthologs (all1353 and all0193 putative orthologs of linB, all3836 putative orthologs of linC, and all0352 and alr0353 putative orthologs of linE and linR, respectively) which could be involved in the lindane degradation pathway. Differential expression analysis of these genes in the presence of lindane revealed strong upregulation of one of the potential lin genes of Anabaena sp. PCC 7120.


Assuntos
Anabaena , Hidrocarbonetos Clorados , Praguicidas , Hexaclorocicloexano/metabolismo , Praguicidas/metabolismo , Hidrocarbonetos Clorados/metabolismo , Genes Bacterianos , Anabaena/genética , Anabaena/metabolismo , Biodegradação Ambiental
8.
Metallomics ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36201459

RESUMO

Metal and redox homeostasis in cyanobacteria is tightly controlled to preserve the photosynthetic machinery from mismetallation and minimize cell damage. This control is mainly taken by FUR (ferric uptake regulation) proteins. FurC works as the PerR (peroxide response) paralog in Anabaena sp. PCC7120. Despite its importance, this regulator remained poorly characterized. Although FurC lacks the typical CXXC motifs present in FUR proteins, it contains a tightly bound zinc per subunit. FurC: Zn stoichiometrically binds zinc and manganese in a second site, manganese being more efficient in the binding of FurC: Zn to its DNA target PprxA. Oligomerization analyses of FurC: Zn evidence the occurrence of different aggregates ranging from dimers to octamers. Notably, intermolecular disulfide bonds are not involved in FurC: Zn dimerization, dimer being the most reduced form of the protein. Oligomerization of dimers occurs upon oxidation of thiols by H2O2 or diamide and can be reversed by 1,4-Dithiothreitol (DTT). Irreversible inactivation of the regulator occurs by metal catalyzed oxidation promoted by ferrous iron. However, inactivation upon oxidation with H2O2 in the absence of iron was reverted by addition of DTT. Comparison of models for FurC: Zn dimers and tetramers obtained using AlphaFold Colab and SWISS-MODEL allowed to infer the residues forming both metal-binding sites and to propose the involvement of Cys86 in reversible tetramer formation. Our results decipher the existence of two levels of inactivation of FurC: Zn of Anabaena sp. PCC7120, a reversible one through disulfide-formed FurC: Zn tetramers and the irreversible metal catalyzed oxidation. This additional reversible regulation may be specific of cyanobacteria.


Assuntos
Anabaena , Manganês , Manganês/metabolismo , Peróxido de Hidrogênio/metabolismo , Ditiotreitol/metabolismo , Diamida/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Anabaena/genética , Anabaena/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Peróxidos/metabolismo , Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismo
9.
Biology (Basel) ; 11(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36009811

RESUMO

Paratuberculosis is a disease caused by Mycobacterium avium subsp. paratuberculosis (MAP). It is of great interest to better understand the proteins involved in the pathogenicity of this organism in order to be able to identify potential therapeutic targets and design new vaccines. The protein of interest-MAP3773c-was investigated, and molecular modeling in silico, docking, cloning, expression, purification, and partial characterization of the recombinant protein were achieved. In the in silico study, it was shown that MAP3773c of MAP has 34% sequence similarity with Mycobacterium tuberculosis (MTB) FurB, which is a zinc uptake regulator (Zur) protein. The docking data showed that MAP3773c exhibits two metal-binding sites. The presence of structural Zn2+ in the purified protein was confirmed by SDS-PAGE PAR staining. The purification showed one band that corresponded to a monomer, which was confirmed by liquid chromatography-mass spectrometry (LC-MS). The presence of a monomer was verified by analyzing the native protein structure through BN-SDS-PAGE (Native Blue (BN) Two-Dimensional Electrophoresis) and BN-Western blotting. The MAP3773c protein contains structural zinc. In conclusion, our results show that MAP3773c displays the features of a Fur-type protein with two metal-binding sites, one of them coordinating structural Zn2+.

10.
Plants (Basel) ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015404

RESUMO

Fruit-tree rootstock selection is a challenge under a scenario of growing environmental stresses in which the soil and climate are greatly affected. Salinization is an increasing global process that severely affects soil fertility. The selection of rootstocks with the ability to tolerate salt stress is essential. Excised root cultures may be an excellent experimental approach to study stress physiology and a predictive tool to assess possible tolerance. In this study, we show how protein changes in response to salt stress evaluated in excised root cultures of Prunus cerasus (moderate salt-sensitive cultivar) could be representative of these changes in the roots of whole plants. The 2D electrophoresis of root extracts and subsequent spot identification by MALDI-TOF/TOF-MS show 16 relevant proteins differentially expressed in roots as a response to 60 mM NaCl. Cytoplasmic isozyme fructose 1,6-bisphosphate aldolase shows relevant changes in its relative presence of isoforms as a response to saline stress, while the total level of enzymes remains similar. Ferredoxin-NADP+ reductase increases as a response to salinity, even though the measured activity is not significantly different. The observed changes are congruent with previous proteomic studies on the roots of whole plants that are involved in protection mechanisms against salt stress.

11.
Front Microbiol ; 13: 874709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694298

RESUMO

The increasing occurrence of multidrug-resistant strains of the gastric carcinogenic bacterium Helicobacter pylori threatens the efficacy of current eradication therapies. In a previous work, we found that several 1,4-dihydropyridine (DHP)-based antihypertensive drugs exhibited strong bactericidal activities against H. pylori by targeting the essential response regulator HsrA. To further evaluate the potential of 1,4-DHP as a scaffold for novel antimicrobials against H. pylori, we determined the antibacterial effects of 12 novel DHP derivatives that have previously failed to effectively block L- and T-type calcium channels. Six of these molecules exhibited potent antimicrobial activities (MIC ≤ 8 mg/L) against three different antibiotic-resistant strains of H. pylori, while at least one compound resulted as effective as metronidazole. Such antimicrobial actions appeared to be specific against Epsilonproteobacteria, since no deleterious effects were appreciated on Escherichia coli and Staphylococcus epidermidis. The new bactericidal DHP derivatives targeted the H. pylori regulator HsrA and inhibited its DNA binding activity according to both in vitro and in vivo analyses. Molecular docking predicted a potential druggable binding pocket in HsrA, which could open the door to structure-based design of novel anti-H. pylori drugs.

12.
Environ Microbiol ; 24(2): 566-582, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33938105

RESUMO

FurC (PerR) from Anabaena sp. PCC7120 was previously described as a key transcriptional regulator involved in setting off the oxidative stress response. In the last years, the cross-talk between oxidative stress, iron homeostasis and nitrogen metabolism is becoming more and more evident. In this work, the transcriptome of a furC-overexpressing strain was compared with that of a wild-type strain under both standard and nitrogen-deficiency conditions. The results showed that the overexpression of furC deregulates genes involved in several categories standing out photosynthesis, iron transport and nitrogen metabolism. The novel FurC-direct targets included some regulatory elements that control heterocyst development (hetZ and asr1734), genes directly involved in the heterocyst envelope formation (devBCA and hepC) and genes which participate in the nitrogen fixation process (nifHDK and nifH2, rbrA rubrerythrin and xisHI excisionase). Likewise, furC overexpression notably impacts the mRNA levels of patA encoding a key protein in the heterocyst pattern formation. The relevance of FurC in these processes is bringing out by the fact that the overexpression of furC impairs heterocyst development and cell growth under nitrogen step-down conditions. In summary, this work reveals a new player in the complex regulatory network of heterocyst formation and nitrogen fixation.


Assuntos
Anabaena , Fixação de Nitrogênio , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética
13.
Antioxidants (Basel) ; 10(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199999

RESUMO

FurA is a multifunctional regulator in cyanobacteria that contains five cysteines, four of them arranged into two CXXC motifs. Lack of a structural zinc ion enables FurA to develop disulfide reductase activity. In vivo, FurA displays several redox isoforms, and the oxidation state of its cysteines determines its activity as regulator and its ability to bind different metabolites. Because of the relationship between FurA and the control of genes involved in oxidative stress defense and photosynthetic metabolism, we sought to investigate the role of type m thioredoxin TrxA as a potential redox partner mediating dithiol-disulfide exchange reactions necessary to facilitate the interaction of FurA with its different ligands. Both in vitro cross-linking assays and in vivo two-hybrid studies confirmed the interaction between FurA and TrxA. Light to dark transitions resulted in reversible oxidation of a fraction of the regulator present in Anabaena sp. PCC7120. Reconstitution of an electron transport chain using E. coli NADPH-thioredoxin-reductase followed by alkylation of FurA reduced cysteines evidenced the ability of TrxA to reduce FurA. Furthermore, the use of site-directed mutants allowed us to propose a plausible mechanism for FurA reduction. These results point to TrxA as one of the redox partners that modulates FurA performance.

14.
Arch Biochem Biophys ; 701: 108770, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33524404

RESUMO

Proteins belonging to the FUR (ferric uptake regulator) family are the cornerstone of metalloregulation in most prokaryotes. Although numerous reviews have been devoted to these proteins, these reports are mainly focused on the Fur paralog that gives name to the family. In the last years, the increasing knowledge on the other, less ubiquitous members of this family has evidenced their importance in bacterial metabolism. As the Fur paralog, the major regulator of iron homeostasis, Zur, Irr, BosR and PerR are tightly related to stress defenses and host-pathogen interaction being in many cases essential for virulence. Furthermore, the Nur and Mur paralogs largely contribute to control nickel and manganese homeostasis, which are cofactors of pivotal proteins for host colonization and bacterial redox homeostasis. The present review highlights the main features of FUR proteins that differ to the canonical Fur paralog either in the coregulatory metal, such as Zur, Nur and Mur, or in the action mechanism to control target genes, such as PerR, Irr and BosR.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Proteínas Repressoras , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
15.
FEBS Lett ; 594(2): 278-289, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31538336

RESUMO

2-oxoglutarate (2-OG) is a central metabolite that acts as a signaling molecule informing about the status of the carbon/nitrogen balance of the cell. In recent years, some transcriptional regulators and even two-component systems have been described as 2-OG sensors. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, two master regulators, NtcA and FurA, are deeply involved in the regulation of nitrogen metabolism. Both of them show a complex intertwined regulatory circuit to achieve a suitable regulation of nitrogen fixation. In this work, 2-OG is found to bind FurA, modulating the specific binding of FurA to the ntcA promoter. This study provides evidence of a new additional control point in the complex network controlled by the NtcA and FurA proteins.


Assuntos
Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Ácidos Cetoglutáricos/metabolismo , Fatores de Transcrição/genética , Anabaena/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética
16.
Sci Rep ; 9(1): 11294, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383920

RESUMO

The increasing antibiotic resistance evolved by Helicobacter pylori has alarmingly reduced the eradication rates of first-line therapies. To overcome the current circulating resistome, we selected a novel potential therapeutic target in order to identify new candidate drugs for treating H. pylori infection. We screened 1120 FDA-approved drugs for molecules that bind to the essential response regulator HsrA and potentially inhibit its biological function. Seven natural flavonoids were identified as HsrA binders. All of these compounds noticeably inhibited the in vitro DNA binding activity of HsrA, but only four of them, apigenin, chrysin, kaempferol and hesperetin, exhibited high bactericidal activities against H. pylori. Chrysin showed the most potent bactericidal activity and the most synergistic effect in combination with clarithromycin or metronidazole. Flavonoid binding to HsrA occurs preferably at its C-terminal effector domain, interacting with amino acid residues specifically involved in forming the helix-turn-helix DNA binding motif. Our results validate the use of HsrA as a novel and effective therapeutic target in H. pylori infection and provide molecular evidence of a novel antibacterial mechanism of some natural flavonoids against H. pylori. The results further support the valuable potential of natural flavonoids as candidate drugs for novel antibacterial strategies.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Flavonoides/farmacologia , Helicobacter pylori/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Descoberta de Drogas , Flavonoides/química , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Humanos , Simulação de Acoplamento Molecular
17.
Plant Cell Physiol ; 60(8): 1778-1789, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111929

RESUMO

The FUR (Ferric Uptake Regulator) family in Anabaena sp. PCC 7120 consists of three paralogs named FurA (Fur), FurB (Zur) and FurC (PerR). furC seems to be an essential gene in the filamentous nitrogen-fixing strain Anabaena sp. PCC 7120, suggesting that it plays a fundamental role in this organism. In order to better understand the functions of FurC in Anabaena, the phenotype of a derivative strain that overexpresses this regulator (EB2770FurC) has been characterized. The furC-overexpressing variant presented alterations in growth rate, morphology and ultrastructure, as well as higher sensitivity to peroxide than Anabaena sp. PCC 7120. Interestingly, the overexpression of furC led to reduced photosynthetic O2 evolution, increased respiratory activity, and had a significant influence in the composition and efficiency of both photosystems. Comparative transcriptional analyses, together with electrophoretic mobility shift assays allowed the identification of different genes directly controlled by FurC, and involved in processes not previously related to PerR proteins, such as the cell division gene ftsZ and the major thylakoid membrane protease ftsH. The rise in the transcription of ftsH in EB2770FurC cells correlated with reduced levels of the D1 protein, which is involved in the PSII repair cycle. Deregulation of the oxidative stress response in EB2770FurC cells led to the identification of novel FurC targets involved in the response to H2O2 through different mechanisms. These results, together with the effect of furC overexpression on the composition, stability and efficiency of the photosynthetic machinery of Anabaena, disclose novel links between PerR proteins, cell division and photosynthesis in filamentous cyanobacteria.


Assuntos
Anabaena/metabolismo , Anabaena/fisiologia , Proteínas de Bactérias/metabolismo , Fotossíntese/fisiologia , Anabaena/genética , Proteínas de Bactérias/genética , Divisão Celular/fisiologia , Estresse Oxidativo/fisiologia , Fotossíntese/genética
18.
Antioxid Redox Signal ; 30(13): 1651-1696, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30073850

RESUMO

SIGNIFICANCE: The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES: Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS: Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.


Assuntos
Modelos Biológicos , Oxirredução , Células Procarióticas/metabolismo , Transcrição Gênica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biomarcadores , Heme/metabolismo , Ferro/metabolismo , NAD/metabolismo , Oxidantes/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sensibilidade e Especificidade , Relação Estrutura-Atividade , Enxofre/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
19.
Biochem Mol Biol Educ ; 46(5): 493-501, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30066985

RESUMO

Recombinant protein expression and site-directed mutagenesis of target genes have demonstrated an increasing importance in the fields of molecular biology, biochemistry, biotechnology, and medicine. By using the flavodoxin of the model cyanobacterium Anabaena sp. PCC 7120 as a laboratory tool, we designed a comprehensive laboratory practice encompassing several well-established molecular biology techniques and procedures in order to fulfill two main objectives: (1) overexpression and immunodetection of Anabaena flavodoxin in recombinant Escherichia coli cell extracts, and (2) site-directed mutagenesis of the Anabaena flavodoxin gene isiB. This lab practice provides undergraduate students the possibility to perform by themselves several essential techniques in the field. With the aid of professors, students are stimulated to think, to interpret, and to discuss the results based on what they had learned in previous theoretical courses. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(5):493-501, 2018.


Assuntos
Anabaena/genética , Flavodoxina/análise , Flavodoxina/genética , Biologia Molecular/educação , Mutagênese Sítio-Dirigida , Flavodoxina/imunologia , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Estudantes , Universidades
20.
Future Med Chem ; 10(5): 541-560, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29461098

RESUMO

Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Antibacterianos/química , Bactérias/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Humanos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA