Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Orthod Craniofac Res ; 26(4): 560-567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36811276

RESUMO

OBJECTIVE: To present and validate an open-source fully automated landmark placement (ALICBCT) tool for cone-beam computed tomography scans. MATERIALS AND METHODS: One hundred and forty-three large and medium field of view cone-beam computed tomography (CBCT) were used to train and test a novel approach, called ALICBCT that reformulates landmark detection as a classification problem through a virtual agent placed inside volumetric images. The landmark agents were trained to navigate in a multi-scale volumetric space to reach the estimated landmark position. The agent movements decision relies on a combination of DenseNet feature network and fully connected layers. For each CBCT, 32 ground truth landmark positions were identified by 2 clinician experts. After validation of the 32 landmarks, new models were trained to identify a total of 119 landmarks that are commonly used in clinical studies for the quantification of changes in bone morphology and tooth position. RESULTS: Our method achieved a high accuracy with an average of 1.54 ± 0.87 mm error for the 32 landmark positions with rare failures, taking an average of 4.2 second computation time to identify each landmark in one large 3D-CBCT scan using a conventional GPU. CONCLUSION: The ALICBCT algorithm is a robust automatic identification tool that has been deployed for clinical and research use as an extension in the 3D Slicer platform allowing continuous updates for increased precision.


Assuntos
Pontos de Referência Anatômicos , Imageamento Tridimensional , Cefalometria/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Pontos de Referência Anatômicos/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos
2.
Shape Med Imaging (2023) ; 14350: 201-210, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38250732

RESUMO

Three-dimensional (3D) shape lies at the core of understanding the physical objects that surround us. In the biomedical field, shape analysis has been shown to be powerful in quantifying how anatomy changes with time and disease. The Shape AnaLysis Toolbox (SALT) was created as a vehicle for disseminating advanced shape methodology as an open source, free, and comprehensive software tool. We present new developments in our shape analysis software package, including easy-to-interpret statistical methods to better leverage the quantitative information contained in SALT's shape representations. We also show SlicerPipelines, a module to improve the usability of SALT by facilitating the analysis of large-scale data sets, automating workflows for non-expert users, and allowing the distribution of reproducible workflows.

3.
PLoS One ; 17(10): e0275033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223330

RESUMO

The segmentation of medical and dental images is a fundamental step in automated clinical decision support systems. It supports the entire clinical workflow from diagnosis, therapy planning, intervention, and follow-up. In this paper, we propose a novel tool to accurately process a full-face segmentation in about 5 minutes that would otherwise require an average of 7h of manual work by experienced clinicians. This work focuses on the integration of the state-of-the-art UNEt TRansformers (UNETR) of the Medical Open Network for Artificial Intelligence (MONAI) framework. We trained and tested our models using 618 de-identified Cone-Beam Computed Tomography (CBCT) volumetric images of the head acquired with several parameters from different centers for a generalized clinical application. Our results on a 5-fold cross-validation showed high accuracy and robustness with a Dice score up to 0.962±0.02. Our code is available on our public GitHub repository.


Assuntos
Inteligência Artificial , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada de Feixe Cônico/métodos , Cabeça , Processamento de Imagem Assistida por Computador/métodos , Cintilografia , Crânio/diagnóstico por imagem
4.
Int J Comput Assist Radiol Surg ; 17(9): 1745-1750, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35511395

RESUMO

PURPOSE: NousNav is a complete low-cost neuronavigation system that aims to democratize access to higher-quality healthcare in lower-resource settings. NousNav's goal is to provide a model for local actors to be able to reproduce, build and operate a fully functional neuronavigation system at an affordable cost. METHODS: NousNav is entirely open source and relies on low-cost off-the-shelf components, which makes it easy to reproduce and deploy in any region. NousNav's software is also specifically devised with the low-resource setting in mind. RESULTS: It offers means for intuitive intraoperative control. The designed interface is also clean and simple. This allows for easy intraoperative use by either the practicing clinician or a nurse. It thus alleviates the need for a dedicated technician for operation. CONCLUSION: A prototype implementation of the design was built. Hardware and algorithms were designed for robustness, ruggedness, modularity, to be standalone and data-agnostic. The built prototype demonstrates feasibility of the objectives.


Assuntos
Neuronavegação , Software , Algoritmos , Humanos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2948-2951, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891863

RESUMO

In this paper, machine learning approaches are proposed to support dental researchers and clinicians to study the shape and position of dental crowns and roots, by implementing a Patient Specific Classification and Prediction tool that includes RootCanalSeg and DentalModelSeg algorithms and then merges the output of these tools for intraoral scanning and volumetric dental imaging. RootCanalSeg combines image processing and machine learning approaches to automatically segment the root canals of the lower and upper jaws from large datasets, providing clinical information on tooth long axis for orthodontics, endodontics, prosthodontic and restorative dentistry procedures. DentalModelSeg includes segmenting the teeth from the crown shape to provide clinical information on each individual tooth. The merging algorithm then allows users to integrate dental models for quantitative assessments. Precision in dentistry has been mainly driven by dental crown surface characteristics, but information on tooth root morphology and position is important for successful root canal preparation, pulp regeneration, planning of orthodontic movement, restorative and implant dentistry. In this paper we propose a patient specific classification and prediction of dental root canal and crown shape analysis workflow that employs image processing and machine learning methods to analyze crown surfaces, obtained by intraoral scanners, and three-dimensional volumetric images of the jaws and teeth root canals, obtained by cone beam computed tomography (CBCT).


Assuntos
Cavidade Pulpar , Polpa Dentária , Tomografia Computadorizada de Feixe Cônico , Coroas , Cavidade Pulpar/diagnóstico por imagem , Humanos , Regeneração
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2952-2955, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891864

RESUMO

In order to diagnose TMJ pathologies, we developed and tested a novel algorithm, MandSeg, that combines image processing and machine learning approaches for automatically segmenting the mandibular condyles and ramus. A deep neural network based on the U-Net architecture was trained for this task, using 109 cone-beam computed tomography (CBCT) scans. The ground truth label maps were manually segmented by clinicians. The U-Net takes 2D slices extracted from the 3D volumetric images. All the 3D scans were cropped depending on their size in order to keep only the mandibular region of interest. The same anatomic cropping region was used for every scan in the dataset. The scans were acquired at different centers with different resolutions. Therefore, we resized all scans to 512×512 in the pre-processing step where we also performed contrast adjustment as the original scans had low contrast. After the pre-processing, around 350 slices were extracted from each scan, and used to train the U-Net model. For the cross-validation, the dataset was divided into 10 folds. The training was performed with 60 epochs, a batch size of 8 and a learning rate of 2×10-5. The average performance of the models on the test set presented 0.95 ± 0.05 AUC, 0.93 ± 0.06 sensitivity, 0.9998 ± 0.0001 specificity, 0.9996 ± 0.0003 accuracy, and 0.91 ± 0.03 F1 score. This study findings suggest that fast and efficient CBCT image segmentation of the mandibular condyles and ramus from different clinical data sets and centers can be analyzed effectively. Future studies can now extract radiomic and imaging features as potentially relevant objective diagnostic criteria for TMJ pathologies, such as osteoarthritis (OA). The proposed segmentation will allow large datasets to be analyzed more efficiently for disease classification.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Mandíbula/diagnóstico por imagem
7.
J Med Internet Res ; 23(12): e20028, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34860667

RESUMO

BACKGROUND: The National Cancer Institute Informatics Technology for Cancer Research (ITCR) program provides a series of funding mechanisms to create an ecosystem of open-source software (OSS) that serves the needs of cancer research. As the ITCR ecosystem substantially grows, it faces the challenge of the long-term sustainability of the software being developed by ITCR grantees. To address this challenge, the ITCR sustainability and industry partnership working group (SIP-WG) was convened in 2019. OBJECTIVE: The charter of the SIP-WG is to investigate options to enhance the long-term sustainability of the OSS being developed by ITCR, in part by developing a collection of business model archetypes that can serve as sustainability plans for ITCR OSS development initiatives. The working group assembled models from the ITCR program, from other studies, and from the engagement of its extensive network of relationships with other organizations (eg, Chan Zuckerberg Initiative, Open Source Initiative, and Software Sustainability Institute) in support of this objective. METHODS: This paper reviews the existing sustainability models and describes 10 OSS use cases disseminated by the SIP-WG and others, including 3D Slicer, Bioconductor, Cytoscape, Globus, i2b2 (Informatics for Integrating Biology and the Bedside) and tranSMART, Insight Toolkit, Linux, Observational Health Data Sciences and Informatics tools, R, and REDCap (Research Electronic Data Capture), in 10 sustainability aspects: governance, documentation, code quality, support, ecosystem collaboration, security, legal, finance, marketing, and dependency hygiene. RESULTS: Information available to the public reveals that all 10 OSS have effective governance, comprehensive documentation, high code quality, reliable dependency hygiene, strong user and developer support, and active marketing. These OSS include a variety of licensing models (eg, general public license version 2, general public license version 3, Berkeley Software Distribution, and Apache 3) and financial models (eg, federal research funding, industry and membership support, and commercial support). However, detailed information on ecosystem collaboration and security is not publicly provided by most OSS. CONCLUSIONS: We recommend 6 essential attributes for research software: alignment with unmet scientific needs, a dedicated development team, a vibrant user community, a feasible licensing model, a sustainable financial model, and effective product management. We also stress important actions to be considered in future ITCR activities that involve the discussion of the sustainability and licensing models for ITCR OSS, the establishment of a central library, the allocation of consulting resources to code quality control, ecosystem collaboration, security, and dependency hygiene.


Assuntos
Ecossistema , Neoplasias , Humanos , Informática , Neoplasias/terapia , Pesquisa , Software , Tecnologia
8.
Orthod Craniofac Res ; 24 Suppl 2: 26-36, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33973362

RESUMO

Advancements in technology and data collection generated immense amounts of information from various sources such as health records, clinical examination, imaging, medical devices, as well as experimental and biological data. Proper management and analysis of these data via high-end computing solutions, artificial intelligence and machine learning approaches can assist in extracting meaningful information that enhances population health and well-being. Furthermore, the extracted knowledge can provide new avenues for modern healthcare delivery via clinical decision support systems. This manuscript presents a narrative review of data science approaches for clinical decision support systems in orthodontics. We describe the fundamental components of data science approaches including (a) Data collection, storage and management; (b) Data processing; (c) In-depth data analysis; and (d) Data communication. Then, we introduce a web-based data management platform, the Data Storage for Computation and Integration, for temporomandibular joint and dental clinical decision support systems.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Ortodontia , Inteligência Artificial , Ciência de Dados , Aprendizado de Máquina
9.
JCO Clin Cancer Inform ; 4: 444-453, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392097

RESUMO

PURPOSE: We summarize Quantitative Imaging Informatics for Cancer Research (QIICR; U24 CA180918), one of the first projects funded by the National Cancer Institute (NCI) Informatics Technology for Cancer Research program. METHODS: QIICR was motivated by the 3 use cases from the NCI Quantitative Imaging Network. 3D Slicer was selected as the platform for implementation of open-source quantitative imaging (QI) tools. Digital Imaging and Communications in Medicine (DICOM) was chosen for standardization of QI analysis outputs. Support of improved integration with community repositories focused on The Cancer Imaging Archive (TCIA). Priorities included improved capabilities of the standard, toolkits and tools, reference datasets, collaborations, and training and outreach. RESULTS: Fourteen new tools to support head and neck cancer, glioblastoma, and prostate cancer QI research were introduced and downloaded over 100,000 times. DICOM was amended, with over 40 correction proposals addressing QI needs. Reference implementations of the standard in a popular toolkit and standalone tools were introduced. Eight datasets exemplifying the application of the standard and tools were contributed. An open demonstration/connectathon was organized, attracting the participation of academic groups and commercial vendors. Integration of tools with TCIA was improved by implementing programmatic communication interface and by refining best practices for QI analysis results curation. CONCLUSION: Tools, capabilities of the DICOM standard, and datasets we introduced found adoption and utility within the cancer imaging community. A collaborative approach is critical to addressing challenges in imaging informatics at the national and international levels. Numerous challenges remain in establishing and maintaining the infrastructure of analysis tools and standardized datasets for the imaging community. Ideas and technology developed by the QIICR project are contributing to the NCI Imaging Data Commons currently being developed.


Assuntos
Glioblastoma , Informática Médica , Neoplasias da Próstata , Diagnóstico por Imagem , Humanos , Masculino , National Cancer Institute (U.S.) , Estados Unidos
10.
IEEE Trans Med Robot Bionics ; 2(2): 108-117, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33748693

RESUMO

Virtual reality (VR) provides immersive visualization that has proved to be useful in a variety of medical applications. Currently, however, no free open-source software platform exists that would provide comprehensive support for translational clinical researchers in prototyping experimental VR scenarios in training, planning or guiding medical interventions. By integrating VR functions in 3D Slicer, an established medical image analysis and visualization platform, SlicerVR enables virtual reality experience by a single click. It provides functions to navigate and manipulate the virtual scene, as well as various settings to abate the feeling of motion sickness. SlicerVR allows for shared collaborative VR experience both locally and remotely. We present illustrative scenarios created with SlicerVR in a wide spectrum of applications, including echocardiography, neurosurgery, spine surgery, brachytherapy, intervention training and personalized patient education. SlicerVR is freely available under BSD type license as an extension to 3D Slicer and it has been downloaded over 7,800 times at the time of writing this article.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33415323

RESUMO

The biggest challenge to improve the diagnosis and therapies of Craniomaxillofacial conditions is to translate algorithms and software developments towards the creation of holistic patient models. A complete picture of the individual patient for treatment planning and personalized healthcare requires a compilation of clinician-friendly algorithms to provide minimally invasive diagnostic techniques with multimodal image integration and analysis. We describe here the implementation of the open-source Craniomaxillofacial module of the 3D Slicer software, as well as its clinical applications. This paper proposes data management approaches for multisource data extraction, registration, visualization, and quantification. These applications integrate medical images with clinical and biological data analytics, user studies, and other heterogeneous data.

12.
Shape Med Imaging (2020) ; 12474: 145-153, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33385170

RESUMO

This paper proposes machine learning approaches to support dentistry researchers in the context of integrating imaging modalities to analyze the morphology of tooth crowns and roots. One of the challenges to jointly analyze crowns and roots with precision is that two different image modalities are needed. Precision in dentistry is mainly driven by dental crown surfaces characteristics, but information on tooth root shape and position is of great value for successful root canal preparation, pulp regeneration, planning of orthodontic movement, restorative and implant dentistry. An innovative approach is to use image processing and machine learning to combine crown surfaces, obtained by intraoral scanners, with three dimensional volumetric images of the jaws and teeth root canals, obtained by cone beam computed tomography. In this paper, we propose a patient specific classification of dental root canal and crown shape analysis workflow that is widely applicable.

14.
Shape Med Imaging (2018) ; 11167: 65-72, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31032495

RESUMO

SlicerSALT is an open-source platform for disseminating state-of-the-art methods for performing statistical shape analysis. These methods are developed as 3D Slicer extensions to take advantage of its powerful underlying libraries. SlicerSALT itself is a heavily customized 3D Slicer package that is designed to be easy to use for shape analysis researchers. The packaged methods include powerful techniques for creating and visualizing shape representations as well as performing various types of analysis.

15.
Cancer Res ; 77(21): e87-e90, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092948

RESUMO

Quantitative analysis of clinical image data is an active area of research that holds promise for precision medicine, early assessment of treatment response, and objective characterization of the disease. Interoperability, data sharing, and the ability to mine the resulting data are of increasing importance, given the explosive growth in the number of quantitative analysis methods being proposed. The Digital Imaging and Communications in Medicine (DICOM) standard is widely adopted for image and metadata in radiology. dcmqi (DICOM for Quantitative Imaging) is a free, open source library that implements conversion of the data stored in commonly used research formats into the standard DICOM representation. dcmqi source code is distributed under BSD-style license. It is freely available as a precompiled binary package for every major operating system, as a Docker image, and as an extension to 3D Slicer. Installation and usage instructions are provided in the GitHub repository at https://github.com/qiicr/dcmqi Cancer Res; 77(21); e87-90. ©2017 AACR.


Assuntos
Biologia Computacional/métodos , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Disseminação de Informação/métodos , Humanos , Internet , Medicina de Precisão/métodos , Radiologia/métodos
16.
Cancer Res ; 77(21): e104-e107, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092951

RESUMO

Radiomics aims to quantify phenotypic characteristics on medical imaging through the use of automated algorithms. Radiomic artificial intelligence (AI) technology, either based on engineered hard-coded algorithms or deep learning methods, can be used to develop noninvasive imaging-based biomarkers. However, lack of standardized algorithm definitions and image processing severely hampers reproducibility and comparability of results. To address this issue, we developed PyRadiomics, a flexible open-source platform capable of extracting a large panel of engineered features from medical images. PyRadiomics is implemented in Python and can be used standalone or using 3D Slicer. Here, we discuss the workflow and architecture of PyRadiomics and demonstrate its application in characterizing lung lesions. Source code, documentation, and examples are publicly available at www.radiomics.io With this platform, we aim to establish a reference standard for radiomic analyses, provide a tested and maintained resource, and to grow the community of radiomic developers addressing critical needs in cancer research. Cancer Res; 77(21); e104-7. ©2017 AACR.


Assuntos
Algoritmos , Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Radiografia/métodos , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Reprodutibilidade dos Testes
17.
Magn Reson Imaging ; 30(9): 1323-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22770690

RESUMO

Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open-source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future directions that can further facilitate development and validation of imaging biomarkers using 3D Slicer.


Assuntos
Diagnóstico por Imagem/métodos , Imageamento Tridimensional/métodos , Automação , Biomarcadores/metabolismo , Neoplasias Encefálicas/patologia , Bases de Dados Factuais , Glioblastoma/patologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Informática Médica/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/patologia , Software , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA