Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Matrix Biol ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38750698

RESUMO

Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.

3.
Am J Med Genet A ; 191(10): 2571-2577, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353964

RESUMO

Skeletal dysplasias broadly include disorders of cartilage or bone. Omodysplasia-1 is a type of skeletal dysplasia caused by biallelic loss of function variants in the GPC6 gene. GPC6 codes for the protein glypican 6 (GPC6) (OMIM *604404), which stimulates bone growth. We report a family in which five out of nine children were presented with a skeletal dysplasia characterized phenotypically by mild short stature and rhizomelia. All affected individuals were found to have homozygous missense variants in GPC6: c.511 C>T (p.Arg171Trp). Radiograph findings included rhizomelic foreshortening of all four extremities, coxa breva, and ulna minus deformity. Using a Hedgehog (Hh) reporter assay, we demonstrate that the variant found in this family results in significantly reduced stimulation of Hh activity when compared to the wild-type GPC6 protein, however protein function is still present. Thus, the milder phenotype seen in the family presented is hypothesized due to decreased GPC6 protein activity versus complete loss of function as seen in omodysplasia-1. Given the unique phenotype and molecular mechanism, we propose that this family's findings widen the phenotypic spectrum of GPC6-related skeletal dysplasias.


Assuntos
Nanismo , Osteocondrodisplasias , Criança , Humanos , Glipicanas/genética , Irmãos , Proteínas Hedgehog , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Nanismo/genética
4.
Dev Dyn ; 251(12): 2015-2028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36057966

RESUMO

BACKGROUND: Glypicans are a family of proteoglycans that play important roles in embryonic morphogenesis. The mammalian genome contains six glypicans (GPC1 to GPC6). GPC6 and GPC4 are the pair of glypicans that show the highest degree of homology within the family. GPC6-null embryos display bone abnormalities and severely shortened intestines. RESULTS: We show that GPC6-null embryos display significantly smaller stomachs, and that Hedgehog and noncanonical Wnt signaling are dysregulated in GPC6-null stomachs. Like GPC6, GPC4 is expressed by the developing stomach. However, GPC4-null embryos have normal stomachs. To investigate whether GPC6 and GPC4 display functional overlap in the developing stomach, we crossed GPC4-null mice with GPC6 conditional mutants in which the expression of this glypican is severely reduced in the stomach. Notably, we found that the compound mutants display stomachs that are smaller than those of the GPC6 conditional mutants. We also found that this functional overlap between GPC6 and GPC4 is mediated by the noncanonical Wnt pathway. CONCLUSION: This study demonstrates that GPC6 stimulates the growth of the embryonic stomach via Wnt and Hh signaling. In addition, we uncovered a Wnt-mediated functional overlap between GPC6 and GPC4 in the developing stomach.


Assuntos
Glipicanas , Proteínas Hedgehog , Estômago , Animais , Camundongos , Glipicanas/genética , Glipicanas/metabolismo , Proteínas Hedgehog/genética , Camundongos Knockout , Proteoglicanas/genética , Estômago/embriologia , Via de Sinalização Wnt
5.
Am J Physiol Cell Physiol ; 322(4): C694-C698, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235423

RESUMO

Glypicans are proteoglycans that are bound to the outer surface of the plasma membrane by a glycosylphosphatidylinositol anchor. The mammalian genome contains six members of the glypican family (GPC1 to GPC6). Although the degree of sequence homology within the family is rather low, the three-dimensional structure of these proteoglycans is highly conserved. Glypicans are predominantly expressed during embryonic development. Genetic and biochemical studies have shown that glypicans can stimulate or inhibit the signaling pathways triggered by Wnts, hedgehogs, fibroblast growth factors, and bone morphogenetic proteins. The study of mutant mouse strains demonstrated that glypicans have important functions in the developmental morphogenesis of various organs. In addition, a role of glypicans in synapsis formation has been established. Notably, glypican loss-of-function mutations are the cause of three human inherited syndromes. Recent analysis of glypican compound mutant mice has demonstrated that members of this protein family display redundant functions during embryonic development.


Assuntos
Glipicanas , Proteoglicanas , Animais , Membrana Celular/metabolismo , Embrião de Mamíferos/metabolismo , Glipicanas/química , Mamíferos/metabolismo , Camundongos , Proteoglicanas/química , Transdução de Sinais
6.
Nat Commun ; 11(1): 5915, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219207

RESUMO

Proteoglycans (PGs) are composed of a core protein and one or more chains of glycosaminoglycans (GAGs). The highly heterogeneous GAG chains play an irreplaceable role in the functions of PGs. However, the lack of an approach to control the exact structure of GAG chains conjugated to PGs tremendously hinders functional studies of PGs. Herein, by using glypican-3 as a model, we establish an aldehyde tag-based approach to assemble PGs with specific GAG chains on the surface of living cells. We show that the engineered glypican-3 can regulate Wnt and Hedgehog signaling like the wild type. Furthermore, we also present a method for studying the interaction of PGs with their target glycoproteins by combining the assembly of PGs carrying specific GAG chains with metabolic glycan labeling, and most importantly, we obtain evidence of GPC3 directly interacting with Frizzled. In conclusion, this study provides a very useful platform for structural and functional studies of PGs with specific GAG chains.


Assuntos
Glicosaminoglicanos , Glipicanas/metabolismo , Proteoglicanas , Animais , Metabolismo dos Carboidratos , Linhagem Celular , Glicômica/métodos , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Camundongos , Proteoglicanas/química , Proteoglicanas/metabolismo , Transdução de Sinais
7.
Matrix Biol ; 88: 19-32, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31756413

RESUMO

We report here that Glypican-6 (GPC6)-null mice display at birth small intestines that are 75% shorter than those of normal littermates. Notably, we demonstrate that the role of GPC6 in intestinal elongation is mediated by both Hedgehog (Hh) and non-canonical Wnt signaling. Based on results from in vitro experiments, we had previously proposed that GPC6 stimulates Hh signaling by interacting with Hh and Patched1 (Ptc1), and facilitating/stabilizing their interaction. Here we provide strong support to this hypothesis by showing that GPC6 binds to Ptc1 in the mesenchymal layer of embryonic intestines. This study also provides experimental evidence that strongly suggests that GPC6 inhibits the activity of Wnt5a on the intestinal epithelium by binding to this growth factor, and reducing its release from the surrounding mesenchymal cells. Finally, we show that whereas the mesenchymal layer of GPC6-null intestines displays reduced cell proliferation and a thinner smooth muscle layer, epithelial cell differentiation is not altered in the mutant gut.


Assuntos
Glipicanas/genética , Glipicanas/metabolismo , Intestinos/crescimento & desenvolvimento , Receptor Patched-1/metabolismo , Proteína Wnt-5a/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Intestinos/citologia , Camundongos , Células NIH 3T3 , Via de Sinalização Wnt
8.
Cell Death Dis ; 10(2): 117, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741932

RESUMO

The ETS transcription factor Fli-1 controls the expression of genes involved in hematopoiesis including cell proliferation, survival, and differentiation. Dysregulation of Fli-1 induces hematopoietic and solid tumors, rendering it an important target for therapeutic intervention. Through high content screens of a library of chemicals isolated from medicinal plants in China for inhibitors of a Fli-1 transcriptional reporter cells, we hereby report the identification of diterpenoid-like compounds that strongly inhibit Fli-1 transcriptional activity. These agents suppressed the growth of erythroleukemic cells by inducing apoptosis and differentiation. They also inhibited survival and proliferation of B-cell leukemic cell lines as well as primary B-cell lymphocytic leukemia (B-CLL) isolated from 7 patients. Moreover, these inhibitors blocked leukemogenesis in a mouse model of erythroleukemia, in which Fli-1 is the driver of tumor initiation. Computational docking analysis revealed that the diterpenoid-like compounds bind with high affinity to nucleotide residues in a pocket near the major groove within the DNA-binding sites of Fli-1. Functional inhibition of Fli-1 by these compounds triggered its further downregulation through miR-145, whose promoter is normally repressed by Fli-1. These results uncover the importance of Fli-1 in leukemogenesis, a Fli-1-miR145 autoregulatory loop and new anti-Fli-1 diterpenoid agents for the treatment of diverse hematological malignancies overexpressing this transcription factor.


Assuntos
DNA/metabolismo , Diterpenos/química , Proteína Proto-Oncogênica c-fli-1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/química , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Leucemia/tratamento farmacológico , Leucemia/mortalidade , Leucemia/patologia , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteína Proto-Oncogênica c-fli-1/antagonistas & inibidores , Proteína Proto-Oncogênica c-fli-1/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico
9.
FEBS J ; 285(24): 4631-4645, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30387554

RESUMO

E26 transformation-specific (ETS) gene family contains a common DNA-binding domain, the ETS domain, responsible for sequence-specific DNA recognition on target promoters. The Fli-1 oncogene, a member of ETS gene family, plays a critical role in hematopoiesis and is overexpressed in diverse hematological malignancies. This ETS transcription factor regulates genes controlling several hallmarks of cancer and thus represents an excellent target for cancer therapy. By screening compounds isolated from the medicinal plant Dysoxylum binectariferum in China, we identified two chemically related flavagline-like compounds including 4'-demethoxy-3',4'-methylenedioxyrocaglaol and rocaglaol that strongly inhibited Fli-1 transactivation ability. These compounds altered expression of Fli-1 target genes including GATA1, EKLF, SHIP1, and BCL2. Consequently, the flavagline-like compounds suppressed proliferation, induced apoptosis, and promoted erythroid differentiation of leukemic cells in culture. These compounds also suppressed erythroleukemogenesis in vivo in a Fli-1-driven mouse model. Mechanistically, the compounds blocked c-Raf-MEK-MAPK/ERK signaling, reduced phosphorylation of eukaryotic translation initiation factor 4E (eIF4E), and inhibited Fli-1 protein synthesis. Consistent with its high expression in myelomas, B-cell lymphoma, and B chronic lymphocytic leukemia (B-CLL), pharmacological inhibition of Fli-1 by the flavagline-like compounds or genetic knock-down via shRNA significantly hindered proliferation of corresponding cell lines and patients' samples. These results uncover a critical role of Fli-1 in growth and survival of various hematological malignancies and point to flavagline-like agents as lead compounds for the development of anti-Fli-1 drugs to treat leukemias/lymphomas overexpressing Fli-1.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzofuranos/farmacologia , Leucemia/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteína Proto-Oncogênica c-fli-1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos Fitogênicos/química , Apoptose , Benzofuranos/química , Ciclo Celular , Proliferação de Células , Ensaios de Triagem em Larga Escala , Humanos , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Extratos Vegetais/química , Plantas Medicinais/química , Células Tumorais Cultivadas
10.
J Cell Biol ; 216(9): 2911-2926, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28696225

RESUMO

Autosomal-recessive omodysplasia (OMOD1) is a genetic condition characterized by short stature, shortened limbs, and facial dysmorphism. OMOD1 is caused by loss-of-function mutations of glypican 6 (GPC6). In this study, we show that GPC6-null embryos display most of the abnormalities found in OMOD1 patients and that Hedgehog (Hh) signaling is significantly reduced in the long bones of these embryos. The Hh-stimulatory activity of GPC6 was also observed in cultured cells, where this GPC increased the binding of Hh to Patched 1 (Ptc1). Consistent with this, GPC6 interacts with Hh through its core protein and with Ptc1 through its glycosaminoglycan chains. Hh signaling is triggered at the primary cilium. In the absence of Hh, we observed that GPC6 is localized outside of the cilium but moves into the cilium upon the addition of Hh. We conclude that GPC6 stimulates Hh signaling by binding to Hh and Ptc1 at the cilium and increasing the interaction of the receptor and ligand.


Assuntos
Fêmur/metabolismo , Glipicanas/metabolismo , Transtornos do Crescimento/metabolismo , Proteínas Hedgehog/metabolismo , Osteocondrodisplasias/congênito , Osteogênese , Tíbia/metabolismo , Animais , Proliferação de Células , Cílios/metabolismo , Modelos Animais de Doenças , Fêmur/embriologia , Predisposição Genética para Doença , Glicosaminoglicanos/metabolismo , Glipicanas/deficiência , Glipicanas/genética , Transtornos do Crescimento/embriologia , Transtornos do Crescimento/genética , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Osteocondrodisplasias/embriologia , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Receptor Patched-1/metabolismo , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Tíbia/embriologia , Fatores de Tempo , Transfecção , Proteína GLI1 em Dedos de Zinco/metabolismo
11.
PLoS One ; 11(10): e0165079, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27768722

RESUMO

Pressure overload is a frequent cause of heart failure. Heart failure affects millions of patients worldwide and is a major cause of morbidity and mortality. Cell surface proteoglycans are emerging as molecular players in cardiac remodeling, and increased knowledge about their regulation and function is needed for improved understanding of cardiac pathogenesis. Here we investigated glypicans (GPC1-6), a family of evolutionary conserved heparan sulfate proteoglycans anchored to the extracellular leaflet of the cell membrane, in experimental and clinical heart failure, and explored the function of glypican-6 in cardiac cells in vitro. In mice subjected to pressure overload by aortic banding (AB), we observed elevated glypican-6 levels during hypertrophic remodeling and dilated, end-stage heart failure. Consistently, glypican-6 mRNA was elevated in left ventricular myocardium from explanted hearts of patients with end-stage, dilated heart failure with reduced ejection fraction. Glypican-6 levels correlated negatively with left ventricular ejection fraction in patients, and positively with lung weight after AB in mice. Glypican-6 mRNA was expressed in both cardiac fibroblasts and cardiomyocytes, and the corresponding protein displayed different sizes in the two cell types due to tissue-specific glycanation. Importantly, adenoviral overexpression of glypican-6 in cultured cardiomyocytes increased protein synthesis and induced mRNA levels of the pro-hypertrophic signature gene ACTA1 and the hypertrophy and heart failure signature genes encoding natriuretic peptides, NPPA and NPPB. Overexpression of GPC6 induced ERK1/2 phosphorylation, and co-treatment with the ERK inhibitor U0126 attenuated the GPC6-induced increase in NPPA, NPPB and protein synthesis. In conclusion, our data suggests that glypican-6 plays a role in clinical and experimental heart failure progression by regulating cardiomyocyte growth through ERK signaling.


Assuntos
Glipicanas/metabolismo , Insuficiência Cardíaca/metabolismo , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos/metabolismo , Regulação para Cima , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Ratos , Ratos Wistar
12.
Biochim Biophys Acta ; 1855(2): 276-300, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829250

RESUMO

Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neovascularização Patológica/genética , Proteoglicanas/biossíntese , Pesquisa Translacional Biomédica , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Proteoglicanas/antagonistas & inibidores , Proteoglicanas/uso terapêutico , Transdução de Sinais/genética , Microambiente Tumoral/genética
13.
J Biol Chem ; 290(12): 7576-85, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25653284

RESUMO

Glypican-3 (GPC3) is one of the six members of the mammalian glypican family. We have previously reported that GPC3 inhibits Hedgehog (Hh) signaling by competing with Patched (Ptc) for Hh binding. We also showed that GPC3 binds with high affinity to Hh through its core protein, but that it does not interact with Ptc. Several members of the glypican family, including GPC3, are subjected to an endoproteolytic cleavage by the furin-like convertase family of endoproteases. Surprisingly, however, we have found that a mutant GPC3 that cannot be processed by convertases is as potent as wild-type GPC3 in stimulating Wnt activity in hepatocellular carcinoma cell lines and 293T cells and in promoting hepatocellular carcinoma growth. In this study, we show that processing by convertases is essential for GPC3-induced inhibition of Hh signaling. Moreover, we show that a convertase-resistant GPC3 stimulates Hh signaling by increasing the binding of this growth factor to Ptc. Consistent with this, we show that the convertase-resistant mutant binds to both Hh and Ptc through its heparan sulfate (HS) chains. Unexpectedly, we found that the mutant core protein does not bind to Hh. We also report that the convertase-resistant mutant GPC3 carries HS chains with a significantly higher degree of sulfation than those of wild-type GPC3. We propose that the structural changes generated by the lack of cleavage determine a change in the sulfation of the HS chains and that these hypersulfated chains mediate the interaction of the mutant GPC3 with Ptc.


Assuntos
Glipicanas/fisiologia , Proteínas Hedgehog/metabolismo , Pró-Proteína Convertases/metabolismo , Transdução de Sinais/fisiologia , Células 3T3 , Animais , Células HEK293 , Humanos , Camundongos
14.
J Cell Sci ; 127(Pt 7): 1565-75, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24496449

RESUMO

Glypican-3 (GPC3) is a proteoglycan that is bound to the cell surface. It is expressed by most hepatocellular carcinomas (HCCs) but not by normal hepatocytes. GPC3 stimulates HCC growth by promoting canonical Wnt signaling. Because glypicans interact with Wnts, it has been proposed that these proteoglycans stimulate signaling by increasing the amount of Wnt at the cell membrane, thus facilitating the interaction of this growth factor with its signaling receptor, Frizzled. However, in this study, we demonstrate that GPC3 plays a more direct role in the stimulation of Wnt signaling. Specifically, we show that, in addition to interacting with Wnt, GPC3 and Frizzled interact directly through the glycosaminoglycan chains of GPC3, indicating that this glypican stimulates the formation of signaling complexes between Wnt and Frizzled. Consistent with this, we show that the binding of Wnt at the cell membrane triggers the endocytosis of a complex that includes Wnt, Frizzled and GPC3. Additional support for our model is provided by the finding that glypican-6 (GPC6) inhibits canonical Wnt signaling, despite the fact that it binds to Wnt at the cell membrane.


Assuntos
Carcinoma Hepatocelular/metabolismo , Receptores Frizzled/metabolismo , Glipicanas/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Células HEK293 , Humanos
15.
Matrix Biol ; 35: 248-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412155

RESUMO

Glypicans (GPCs) are a family of proteoglycans that are bound to the cell surface by a glycosylphosphatidylinositol anchor. Six glypicans have been found in the mammalian genome (GPC1 to GPC6). GPCs regulate several signaling pathways, including the pathway triggered by Hedgehogs (Hhs). This regulation, which could be stimulatory or inhibitory, occurs at the signal reception level. In addition, GPCs have been shown to be involved in the formation of Hh gradients in the imaginal wing disks in Drosophila. In this review we will discuss the role of various glypicans in specific developmental events in the embryo that are regulated by Hh signaling. In addition, we will discuss the mechanism by which loss-of-function GPC3 mutations alter Hh signaling in the Simpson-Golabi-Behmel overgrowth syndrome, and the molecular basis of the GPC5-induced stimulation of Hh signaling and tumor progression in rhabdomyosarcomas.


Assuntos
Arritmias Cardíacas/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Gigantismo/metabolismo , Glipicanas/metabolismo , Cardiopatias Congênitas/metabolismo , Proteínas Hedgehog/metabolismo , Deficiência Intelectual/metabolismo , Modelos Biológicos , Rabdomiossarcoma/metabolismo , Transdução de Sinais/fisiologia , Animais , Drosophila melanogaster , Glipicanas/genética , Humanos
16.
Bone ; 55(2): 367-76, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23624389

RESUMO

From birth, the vault of the skull grows at a prodigious rate, driven by the activity of osteoblastic cells at the fibrous joints (sutures) that separate the bony calvarial plates. One in 2500 children is born with a medical condition known as craniosynostosis because of premature bony fusion of the calvarial plates and a cessation of bone growth at the sutures. Bone morphogenetic proteins (BMPs) are potent growth factors that promote bone formation. Previously, we found that Glypican-1 (GPC1) and Glypican-3 (GPC3) are expressed in cranial sutures and are decreased during premature suture fusion in children. Although glypicans are known to regulate BMP signalling, a mechanistic link between GPC1, GPC3 and BMPs and osteogenesis has not yet been investigated. We now report that human primary suture mesenchymal cells coexpress GPC1 and GPC3 on the cell surface and release them into the media. We show that they inhibit BMP2, BMP4 and BMP7 activities, which both physically interact with BMP2 and that immunoblockade of endogenous GPC1 and GPC3 potentiates BMP2 activity. In contrast, increased levels of GPC1 and GPC3 as a result of overexpression or the addition of recombinant protein, inhibit BMP2 signalling and BMP2-mediated osteogenesis. We demonstrate that BMP signalling in suture mesenchymal cells is mediated by both SMAD-dependent and SMAD-independent pathways and that GPC1 and GPC3 inhibit both pathways. GPC3 inhibition of BMP2 activity is independent of attachment of the glypican on the cell surface and post-translational glycanation, and thus appears to be mediated by the core glypican protein. The discovery that GPC1 and GPC3 regulate BMP2-mediated osteogenesis, and that inhibition of endogenous GPC1 and GPC3 potentiates BMP2 responsiveness of human suture mesenchymal cells, indicates how downregulation of glypican expression could lead to the bony suture fusion that characterizes craniosynostosis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Suturas Cranianas/crescimento & desenvolvimento , Glipicanas/metabolismo , Osteogênese/fisiologia , Suturas Cranianas/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Mesoderma/metabolismo , Microscopia Confocal , Transdução de Sinais/fisiologia , Transfecção
17.
FEBS J ; 280(10): 2471-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23305321

RESUMO

Glypican-3 (GPC3) is a member of the glypican family. Glypicans are proteoglycans that are attached to the cell surface by a glycosyl-phosphatidylinositol anchor. They regulate the signaling activity of several growth factors, including Wnts. This regulation is based on the ability of glypicans to stimulate or inhibit the interaction of these growth factors with their respective signaling receptors. It has been clearly established that whereas GPC3 is expressed by most hepatocellular carcinomas (HCCs), this glypican is not detected in normal and cirrhotic liver, or in benign hepatic lesions. Consequently, immunostaining of liver biopsies for GPC3 is currently being used by clinical pathologists to confirm HCC diagnosis when the malignant nature of the lesion is difficult to establish. In addition to being a marker of HCC, GPC3 plays a role in the progression of the disease. GPC3 promotes the growth of HCC by stimulating canonical Wnt signaling. It has been proposed that this stimulation is based on the ability of GPC3 to increase the binding of Wnt to its signaling receptor, Frizzled. Two therapeutic approaches for HCC that target GPC3 are currently being tested in phase II clinical trials. One of them is based on the use of a humanized GPC3 monoclonal antibody that inhibits the in vivo growth of HCC xenografts by inducing antibody-dependent cellular cytotoxicity. The second approach employs a vaccine that consists of two GPC3-derived peptides that induce cytotoxic T lymphocytes against these peptides. Targeting of GPC3 might offer a new tool for the treatment of HCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Glipicanas/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Ensaios Clínicos como Assunto , Progressão da Doença , Receptores Frizzled/metabolismo , Humanos , Fígado/metabolismo , Fígado/patologia , Complexos Multiproteicos/metabolismo , Ligação Proteica , Linfócitos T Citotóxicos/metabolismo , Via de Sinalização Wnt
18.
J Cell Sci ; 125(Pt 14): 3380-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22467855

RESUMO

Glypican-3 (GPC3) is a heparan sulfate (HS) proteoglycan that is bound to the cell membrane through a glycosylphosphatidylinositol link. This glypican regulates embryonic growth by inhibiting the hedgehog (Hh) signaling pathway. GPC3 binds Hh and competes with Patched (Ptc), the Hh receptor, for Hh binding. The interaction of Hh with GPC3 triggers the endocytosis and degradation of the GPC3-Hh complex with the consequent reduction of Hh available for binding to Ptc. Currently, the molecular mechanisms by which the GPC3-Hh complex is internalized remains unknown. Here we show that the low-density-lipoprotein receptor-related protein-1 (LRP1) mediates the Hh-induced endocytosis of the GPC3-Hh complex, and that this endocytosis is necessary for the Hh-inhibitory activity of GPC3. Furthermore, we demonstrate that GPC3 binds through its HS chains to LRP1, and that this interaction causes the removal of GPC3 from the lipid rafts domains.


Assuntos
Glipicanas/metabolismo , Proteínas Hedgehog/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Animais , Linhagem Celular , Clatrina/metabolismo , Endocitose , Glipicanas/genética , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Microdomínios da Membrana/metabolismo , Camundongos , Células NIH 3T3 , Transdução de Sinais , Transfecção
19.
Anticancer Agents Med Chem ; 11(6): 543-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21554204

RESUMO

Glypican-3 (GPC3) is a developmentally-regulated oncofetal protein that has been established as a clinically-relevant biomarker for early hepatocellular carcinoma (HCC). It is one of the first transcripts to appear during malignant hepatocyte transformation, and is expressed at the protein level in approximately half of high-grade dysplastic macronodules in cirrhotic liver. Several studies show it is expressed in most (75 to 100%) of HCCs confirmed by histopathology. The protein is anchored to the hepatocyte membrane by a glycosyl-phosphatidylinositol (GPI) anchor and shows consistent membrane immunostaining pattern, making it a viable target for immunotherapeutic approaches. Targeting GPC3 for therapeutic intervention is a promising approach for the clinical management of HCC and selected other tumors that express the marker.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Glipicanas/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/terapia , Anticorpos Monoclonais/química , Vacinas Anticâncer , Carcinoma Hepatocelular/diagnóstico , Glipicanas/química , Humanos , Imunoterapia , Neoplasias Hepáticas/diagnóstico
20.
J Cell Biol ; 192(4): 691-704, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21339334

RESUMO

Glypican-5 (GPC5) is one of the six members of the glypican family. It has been previously reported that GPC5 stimulates the proliferation of rhabdomyosarcoma cells. In this study, we show that this stimulatory activity of GPC5 is a result of its ability to promote Hedgehog (Hh) signaling. We have previously shown that GPC3, another member of the glypican family, inhibits Hh signaling by competing with Patched 1 (Ptc1) for Hh binding. Furthermore, we showed that GPC3 binds to Hh through its core protein but not to Ptc1. In this paper, we demonstrate that GPC5 increases the binding of Sonic Hh to Ptc1. We also show that GPC5 binds to both Hh and Ptc1 through its glycosaminoglycan chains and that, unlike GPC3, GPC5 localizes to the primary cilia. Interestingly, we found that the heparan sulfate chains of GPC5 display a significantly higher degree of sulfation than those of GPC3. Based on these results, we propose that GPC5 stimulates Hh signaling by facilitating/stabilizing the interaction between Hh and Ptc1.


Assuntos
Proliferação de Células , Glipicanas/fisiologia , Proteínas Hedgehog/metabolismo , Rabdomiossarcoma/metabolismo , Animais , Linhagem Celular Tumoral , Glipicanas/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA