Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Bioinformatics ; 25(1): 72, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355453

RESUMO

BACKGROUND: Copy number alterations (CNAs) are genetic changes commonly found in cancer that involve different regions of the genome and impact cancer progression by affecting gene expression and genomic stability. Computational techniques can analyze copy number data obtained from high-throughput sequencing platforms, and various tools visualize and analyze CNAs in cancer genomes, providing insights into genetic mechanisms driving cancer development and progression. However, tools for visualizing copy number data in cancer research have some limitations. In fact, they can be complex to use and require expertise in bioinformatics or computational biology. While copy number data analysis and visualization provide insights into cancer biology, interpreting results can be challenging, and there may be multiple explanations for observed patterns of copy number alterations. RESULTS: We created Control-FREEC Viewer, a tool that facilitates effective visualization and exploration of copy number data. With Control-FREEC Viewer, experimental data can be easily loaded by the user. After choosing the reference genome, copy number data are displayed in whole genome or single chromosome view. Gain or loss on a specific gene can be found and visualized on each chromosome. Analysis parameters for subsequent sessions can be stored and images can be exported in raster and vector formats. CONCLUSIONS: Control-FREEC Viewer enables users to import and visualize data analyzed by the Control-FREEC tool, as well as by other tools sharing a similar tabular output, providing a comprehensive and intuitive graphical user interface for data visualization.


Assuntos
Neoplasias , Software , Humanos , Variações do Número de Cópias de DNA , Genoma , Biologia Computacional/métodos , Neoplasias/genética
2.
Cancers (Basel) ; 16(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38254906

RESUMO

BACKGROUND: Lung cancer screening with low-dose helical computed tomography (LDCT) reduces mortality in high-risk subjects. Cigarette smoking is linked to up to 90% of lung cancer deaths. Even more so, it is a key risk factor for many other cancers and cardiovascular and pulmonary diseases. The Smokers health Multiple ACtions (SMAC-1) trial aimed to demonstrate the feasibility and effectiveness of an integrated program based on the early detection of smoking-related thoraco-cardiovascular diseases in high-risk subjects, combined with primary prevention. A new multi-component screening design was utilized to strengthen the framework on conventional lung cancer screening programs. We report here the study design and the results from our baseline round, focusing on oncological findings. METHODS: High-risk subjects were defined as being >55 years of age and active smokers or formers who had quit within 15 years (>30 pack/y). A PLCOm2012 threshold >2% was chosen. Subject outreach was streamlined through media campaign and general practitioners' engagement. Eligible subjects, upon written informed consent, underwent a psychology consultation, blood sample collection, self-evaluation questionnaire, spirometry, and LDCT scan. Blood samples were analyzed for pentraxin-3 protein levels, interleukins, microRNA, and circulating tumor cells. Cardiovascular risk assessment and coronary artery calcium (CAC) scoring were performed. Direct and indirect costs were analyzed focusing on the incremental cost-effectiveness ratio per quality-adjusted life years gained in different scenarios. Personalized screening time-intervals were determined using the "Maisonneuve risk re-calculation model", and a threshold <0.6% was chosen for the biennial round. RESULTS: In total, 3228 subjects were willing to be enrolled. Out of 1654 eligible subjects, 1112 participated. The mean age was 64 years (M/F 62/38%), with a mean PLCOm2012 of 5.6%. Former and active smokers represented 23% and 77% of the subjects, respectively. At least one nodule was identified in 348 subjects. LDCTs showed no clinically significant findings in 762 subjects (69%); thus, they were referred for annual/biennial LDCTs based on the Maisonneuve risk (mean value = 0.44%). Lung nodule active surveillance was indicated for 122 subjects (11%). Forty-four subjects with baseline suspicious nodules underwent a PET-FDG and twenty-seven a CT-guided lung biopsy. Finally, a total of 32 cancers were diagnosed, of which 30 were lung cancers (2.7%) and 2 were extrapulmonary cancers (malignant pleural mesothelioma and thymoma). Finally, 25 subjects underwent lung surgery (2.25%). Importantly, there were zero false positives and two false negatives with CT-guided biopsy, of which the patients were operated on with no stage shift. The final pathology included lung adenocarcinomas (69%), squamous cell carcinomas (10%), and others (21%). Pathological staging showed 14 stage I (47%) and 16 stage II-IV (53%) cancers. CONCLUSIONS: LDCTs continue to confirm their efficacy in safely detecting early-stage lung cancer in high-risk subjects, with a negligible risk of false-positive results. Re-calculating the risk of developing lung cancer after baseline LDCTs with the Maisonneuve model allows us to optimize time intervals to subsequent screening. The Smokers health Multiple ACtions (SMAC-1) trial offers solid support for policy assessments by policymakers. We trust that this will help in developing guidelines for the large-scale implementation of lung cancer screening, paving the way for better outcomes for lung cancer patients.

3.
Cancers (Basel) ; 14(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36428760

RESUMO

Gene expression profiling has revolutionized our understanding of cancer biology, showing an unprecedented ability to impact patient management especially in breast cancer. The vast majority of breast cancer gene expression signatures derive from the analysis of the tumor bulk, an experimental approach that limits the possibility to dissect breast cancer heterogeneity thoroughly and might miss the message hidden in biologically and clinically relevant cell populations. During disease progression or upon selective pressures, cancer cells undergo continuous transcriptional changes, which inevitably affect tumor heterogeneity, response to therapy and tendency to disseminate. Therefore, metastasis-associated signatures and transcriptome-wide gene expression measurement at single-cell resolution hold great promise for the future of breast cancer clinical care. Seen from this perspective, transcriptomics of circulating tumor cells (CTCs) represent an attractive opportunity to bridge the knowledge gap and develop novel biomarkers. This review summarizes the current state-of-the-science on CTC gene expression analysis in breast cancer, addresses technical and clinical issues related to the application of CTC-derived signatures, and discusses potential research directions.

4.
J Exp Clin Cancer Res ; 41(1): 78, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35216615

RESUMO

BACKGROUND: Progression to stage IV disease remains the main cause of breast cancer-related deaths. Increasing knowledge on the hematogenous phase of metastasis is key for exploiting the entire window of opportunity to interfere with early dissemination and to achieve a more effective disease control. Recent evidence suggests that circulating tumor cells (CTCs) possess diverse adaptive mechanisms to survive in blood and eventually metastasize, encouraging research into CTC-directed therapies. METHODS: On the hypothesis that the distinguishing molecular features of CTCs reveal useful information on metastasis biology and disease outcome, we compared the transcriptome of CTCs, primary tumors, lymph-node and lung metastases of the MDA-MB-231 xenograft model, and assessed the biological role of a panel of selected genes, by in vitro and in vivo functional assays, and their clinical significance in M0 and M+ breast cancer patients. RESULTS: We found that hematogenous dissemination is governed by a transcriptional program and identified a CTC signature that includes 192 up-regulated genes, mainly related to cell plasticity and adaptation, and 282 down-regulated genes, involved in chromatin remodeling and transcription. Among genes up-regulated in CTCs, FADS3 was found to increases cell membrane fluidity and promote hematogenous diffusion and lung metastasis formation. TFF3 was observed to be associated with a subset of CTCs with epithelial-like features in the experimental model and in a cohort of 44 breast cancer patients, and to play a role in cell migration, invasion and blood-borne dissemination. The analysis of clinical samples with a panel of CTC-specific genes (ADPRHL1, ELF3, FCF1, TFF1 and TFF3) considerably improved CTC detection as compared with epithelial and tumor-associated markers both in M0 and stage IV patients, and CTC kinetics informed disease relapse in the neoadjuvant setting. CONCLUSIONS: Our findings provide evidence on the potential of a CTC-specific molecular profile as source of metastasis-relevant genes in breast cancer experimental models and in patients. Thanks to transcriptome analysis we generated a novel CTC signature in the MDA-MB-231 xenograft model, adding a new piece to the current knowledge on the key players that orchestrate tumor cell hematogenous dissemination and breast cancer metastasis, and expanding the list of CTC-related biomarkers for future validation studies.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo
5.
Cancers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503298

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) frequently presents when surgical intervention is no longer feasible. Despite local treatment with curative intent, patients might experience disease recurrence. In this context, accurate non-invasive biomarkers are urgently needed. We report the results of a pilot study on the diagnostic and prognostic role of circulating tumor cells (CTCs) in operable NSCLC. METHODS: Blood samples collected from healthy volunteers (n = 10), nodule-negative high-risk individuals enrolled in a screening program (n = 7), and NSCLC patients (n = 74) before surgery were analyzed (4 mL) for the presence of cells with morphological features of malignancy enriched through the ISET® technology. RESULTS: CTC detection was 60% in patients, while no target cells were found in lung cancer-free donors. We identified single CTCs (sCTC, 46%) and clusters of CTCs and leukocytes (heterotypic clusters, hetCLU, 31%). The prevalence of sCTC (sCTC/4 mL ≥ 2) or the presence of hetCLU predicted the risk of disease recurrence within the cohort of early-stage (I-II, n = 52) or advanced stage cases (III-IVA, n = 22), respectively, while other tumor-related factors did not inform prognosis. CONCLUSIONS: Cancer cell hematogenous dissemination occurs frequently in patients with NSCLC without clinical evidence of distant metastases, laying the foundation for the application of cell-based tests in screening programs. CTC subpopulations are fine prognostic classifiers whose clinical validity should be further investigated in larger studies.

6.
Cancers (Basel) ; 13(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359818

RESUMO

Lung cancer burden is increasing, with 2 million deaths/year worldwide. Current limitations in early detection impede lung cancer diagnosis when the disease is still localized and thus more curable by surgery or multimodality treatment. Liquid biopsy is emerging as an important tool for lung cancer early detection and for monitoring therapy response. Here, we reviewed recent advances in liquid biopsy for early diagnosis of lung cancer. We summarized DNA- or RNA-based biomarkers, proteins, autoantibodies circulating in the blood, as well as circulating tumor cells (CTCs), and compared the most promising studies in terms of biomarkers prediction performance. While we observed an overall good performance for the proposed biomarkers, we noticed some critical aspects which may complicate the successful translation of these biomarkers into the clinical setting. We, therefore, proposed a roadmap for successful development of lung cancer biomarkers during the discovery, prioritization, and clinical validation phase. The integration of innovative minimally invasive biomarkers in screening programs is highly demanded to augment lung cancer early detection.

7.
Cells ; 8(7)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284534

RESUMO

Hematogenous dissemination may occur early in breast cancer (BC). Experimental models could clarify mechanisms, but in their development, the heterogeneity of this neoplasia must be considered. Here, we describe circulating tumor cells (CTCs) and the metastatic behavior of several BC cell lines in xenografts. MDA-MB-231, BT-474, MDA-MB-453 and MDA-MB-468 cells were injected at the orthotopic level in immunocompromised mice. CTCs were isolated using a size-based method and identified by cytomorphological criteria. Metastases were detected by COX IV immunohistochemistry. CTCs were detected in 90% of animals in each model. In MDA-MB-231, CTCs were observed after 5 weeks from the injection and step wisely increased at later time points. In animals injected with less aggressive cell lines, the load of single CTCs (mean ± SD CTCs/mL: 1.8 ± 1.3 in BT-474, 122.2 ± 278.5 in MDA-MB-453, 3.4 ± 2.5 in MDA-MB468) and the frequency of CTC clusters (overall 38%) were lower compared to MDA-MB231 (946.9 ± 2882.1; 73%). All models had lung metastases, MDA-MB-453 and MDA-MB468 had ovarian foci too, whereas lymph nodal involvement was observed in MDA-MB231 and MDA-MB-468 only. Interestingly, CTCs showed morphological heterogeneity and were rarely associated to host cells. Orthotopic xenograft of BC cell lines offers valid models of hematogenous dissemination and a possible experimental setting to study CTC-blood microenvironment interactions.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Células Neoplásicas Circulantes , Animais , Neoplasias da Mama/sangue , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Transplante Heterólogo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Dis Markers ; 2017: 3414910, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28321147

RESUMO

Circulating tumour cells (CTC) are identified exploiting their protein/gene expression patterns or distinct size compared to blood cells. Data on CTC in bladder cancer (BC) are still scarce. We comparatively analyzed CTC enrichment by AdnaTest ProstateCancerSelect (AT) and ScreenCell®Cyto (SC) kits, combined with identification by EPCAM, MUC1, and ERBB2 expression and by cytological criteria, respectively, in 19 nonmetastatic (M0) and 47 metastatic (M+) BC patients, at baseline (T0) and during treatment (T1). At T0, CTC positivity rates by AT were higher in M+ compared to M0 cases (57.4% versus 25%, p = 0.041). EPCAM was detected in 75% of CTC-positive samples by AT, showing increasing expression levels from T0 to T1 (median (interquartile range, IQR): 0.18 (0.07-0.42) versus 0.84 (0.33-1.84), p = 0.005) in M+ cases. Overall, CTC positivity by SC was around 80% regardless of clinical setting and time point of analysis, except for a lower occurrence at T1 in M0 cases. At T0, circulating tumour microemboli were more frequently (25% versus 8%) detected and more numerous in M+ compared to M0 patients. The approach used for CTC detection impacts the outcome of CTC studies. Further investigations are required to clarify the clinical validity of AT and SC in specific BC clinical contexts.


Assuntos
Células Neoplásicas Circulantes/patologia , Neoplasias da Bexiga Urinária/diagnóstico , Urotélio/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Metástase Neoplásica , Células Neoplásicas Circulantes/metabolismo , Kit de Reagentes para Diagnóstico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Urotélio/metabolismo
9.
Bladder Cancer ; 2(4): 395-403, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28035320

RESUMO

Background: The therapeutic paradigm of metastatic urothelial carcinoma (UC) is rapidly shifting and new biomarkers are needed to enhance patient selection. Objective: Early identification of dynamic predictors of outcome may be a key to optimize the sequence of effective therapies in metastatic UC patients. Methods: Blood samples from patients receiving first-line MVAC chemotherapy were collected at baseline (T0) and after 2 cycles (T2). Samples were processed by immunomagnetic beads (AdnaTest ProstateCancerSelect kit) and the expression of EPCAM, MUC1 and ERBB2 was studied using multiplex-PCR. Circulating tumor cell (CTC) positivity and cutoffs, obtained by receiver operator characteristic (ROC) curve analysis in healthy donors, were: ≥1 positive marker among EPCAM (≥0.40 ng/µl), MUC1 (≥0.10 ng/µl) and ERBB2 (≥0.20 ng/µl). CTC variation (T0/T2) was split in favorable (+/-, -/-, -/+) and unfavorable groups (+/+). Cox regression analyses evaluated associations with clinical factors. Results: In this pilot study to assess a new CTC detection method, among 31 evaluable patients, 17 (54.8%) were CTC-positive at T0. No association was found between CTC and objective response to MVAC. CTC dynamic changes better predicted 3-year progression-free (PFS) and overall survival (OS) compared to CTC status assessed at single time points. Unfavorable trend was univariably detrimental on 3-year PFS (10% vs. 49.2%, p = 0.006) and OS (20% vs. 63.5%, p = 0.017). Significance was maintained after controlling for liver metastases (p = 0.031 and p = 0.025 for PFS and OS) and MSKCC score (p = 0.014 and 0.025). Conclusions: Newly described early CTC changes during chemotherapy might be useful to improve our prognostic ability. Pending validation, these results could fulfill the promise to help accelerating therapeutic sequences.

10.
Oncotarget ; 7(1): 976-94, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26556871

RESUMO

Numerous studies have reported the existence of tumor-promoting cells (TPC) with self-renewal potential and a relevant role in drug resistance. However, pathways and modifications involved in the maintenance of such tumor subpopulations are still only partially understood. Sequencing-based approaches offer the opportunity for a detailed study of TPC including their transcriptome modulation. Using microarrays and RNA sequencing approaches, we compared the transcriptional profiles of parental MCF7 breast cancer cells with MCF7-derived TPC (i.e. MCFS). Data were explored using different bioinformatic approaches, and major findings were experimentally validated. The different analytical pipelines (Lifescope and Cufflinks based) yielded similar although not identical results. RNA sequencing data partially overlapped microarray results and displayed a higher dynamic range, although overall the two approaches concordantly predicted pathway modifications. Several biological functions were altered in TPC, ranging from production of inflammatory cytokines (i.e., IL-8 and MCP-1) to proliferation and response to steroid hormones. More than 300 non-coding RNAs were defined as differentially expressed, and 2,471 potential splicing events were identified. A consensus signature of genes up-regulated in TPC was derived and was found to be significantly associated with insensitivity to fulvestrant in a public breast cancer patient dataset. Overall, we obtained a detailed portrait of the transcriptome of a breast cancer TPC line, highlighted the role of non-coding RNAs and differential splicing, and identified a gene signature with a potential as a context-specific biomarker in patients receiving endocrine treatment.


Assuntos
Perfilação da Expressão Gênica/métodos , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Processamento Alternativo/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estradiol/farmacologia , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos dos fármacos
11.
Int J Biol Markers ; 30(4): e429-33, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26349664

RESUMO

PURPOSE: To compare circulating tumor cell (CTC) detection rates in patients with early (M0) and metastatic (M+) breast cancer using 2 positive-selection methods or size-based unbiased enrichment. METHODS: Blood collected at baseline and at different times during treatment from M0 patients undergoing neoadjuvant therapy and from M+ women starting a new line of treatment was processed in parallel using AdnaTest EMT-1/ and EMT-2/Stem CellSelect/Detect kits or ScreenCell Cyto devices. CTC positivity was defined according to the suggested cutoffs and cytological parameters, respectively. RESULTS: Higher CTC detection rates were obtained with the AdnaTest approach when using for CTC-enrichment antibodies against ERBB2 and EGFR in addition to MUC1 and the classical epithelial surface marker EPCAM (13% vs. 48%). In M0 patients mainly, CTC positivity rates further increased when EMT- and stemness-related marker expression (PIK3CA, AKT2 and ALDH1) was evaluated in addition to EPCAM, MUC1 and ERBB2. When the physical properties of tumor cells were exploited, CTCs were detected at higher percentages than with positive-selection-based methods, without any difference between clinical stages (78% in M0 vs. 72% in M+ cases at baseline). Circulating tumor microemboli (CTMs) were detected in addition to single CTCs with significantly higher frequency in M0 than M+ samples (78% vs. 27%, p = 0.0002). CONCLUSIONS: Different approaches for CTC detection probably identify distinct tumor cell subpopulations, but need technical standardization before their clinical validity and biological specificity may be adequately investigated. The distinct role of CTMs compared with CTCs as prognostic and predictive biomarkers represents a further challenge.


Assuntos
Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/metabolismo , Neoplasias da Mama/metabolismo , Contagem de Células , Separação Celular , Tamanho Celular , Feminino , Humanos , Estudos Prospectivos
12.
J Natl Cancer Inst Monogr ; 2015(51): 60-3, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26063889

RESUMO

For cancer management, predicting and monitoring response to treatment and disease progression longitudinally is crucial due to changes in tumor biology and therapy responsiveness over time. However, solid tumors are usually sampled only at time of initial diagnosis, as obtaining tissue biopsies is an invasive procedures with associated risks. Thus, there is a pressing need for approaches able to serially detect function-related reliable biomarkers reflecting treatment response and/or disease progression through easy noninvasive procedures, amenable for longitudinal analysis of tumor molecular features. Recent evidences indicate that blood and other body fluids could replace invasive surgical biopsies and represent a "liquid biopsy" containing cells and nucleic acids released by primary and metastatic lesions, reflecting their biological features and allowing identification of clinically useful biomarkers and treatment-induced cancer adaption processes. The development of new and highly sensitive technologies that allow to detect and characterize circulating tumor cells, to identify cell-free nucleic acids (circulating tumor-associated microRNAs and cancer-specific mutations in circulating DNA) and to measure their eventual dynamic changes represents therefore a major achievement for disease monitoring. However, notwithstanding preliminary findings support the prognostic and/or predictive role of this new generation of biomarkers, there are a number of technical and biological caveats that still require additional studies to demonstrate and validate their clinical utility. A unique opportunity to rapidly assess the contribution of circulating tumor cells and cell-free nucleic acids to patient management and to personalized medicine could derive by their combined consideration in the neoadjuvant setting.


Assuntos
Biomarcadores Tumorais/sangue , DNA de Neoplasias/sangue , MicroRNAs/sangue , Neoplasias/terapia , Células Neoplásicas Circulantes/patologia , Progressão da Doença , Humanos , Neoplasias/sangue , Neoplasias/diagnóstico , Avaliação de Resultados em Cuidados de Saúde/métodos , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Clin Chem ; 61(1): 278-89, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25411184

RESUMO

BACKGROUND: Determining the transcriptional profile of circulating tumor cells (CTCs) may allow the acquisition of clinically relevant information while overcoming tumor heterogeneity-related biases associated with use of tissue samples for biomarker assessment. However, such molecular characterization is challenging because CTCs are rare and outnumbered by blood cells. METHODS: Here, we describe a technical protocol to measure the expression of >29 000 genes in CTCs captured from whole blood with magnetic beads linked with antibodies against epithelial cell adhesion molecule (EpCAM) and the carcinoma-associated mucin, MUC1, designed to be used for CTC characterization in clinical samples. Low numbers of cells (5-200) from the MCF7 and MDA-MB-468 breast cancer cell lines were spiked in healthy donor blood samples and isolated with the AdnaTest EMT-1/Stem CellSelect kit. Gene expression profiles (GEPs) were obtained with the WG-DASL HT assay and compared with GEPs obtained from RNA isolated from cultured cell lines and unspiked samples. RESULTS: GEPs from samples containing 25 or more spiked cells correlated (r = 0.95) with cognate 100-ng RNA input samples, clustered separately from blood control samples, and allowed MCF7 and MDA-MB-468 cells to be distinguished. GEPs with comparable technical quality were also obtained in a preliminary series of clinical samples. CONCLUSIONS: Our approach allows technically reliable GEPs to be obtained from isolated CTCs for the acquisition of biologically useful information. It is reproducible and suitable for application in prospective studies to assess the clinical utility of CTC GEPs, provided that >25 CTCs can be isolated.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , Células Neoplásicas Circulantes/metabolismo , Transcriptoma/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Feminino , Ontologia Genética , Estudo de Associação Genômica Ampla , Humanos , Células MCF-7 , Células Neoplásicas Circulantes/patologia
14.
Int J Gynecol Cancer ; 20(2): 203-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20169663

RESUMO

INTRODUCTION: Ovarian cancer is highly sensitive to chemotherapy but also shows a high rate of recurrence and drug resistance. These negative outcomes mostly depend on altered apoptotic pathways, making the design of new therapeutic strategies based on the induction of other types of cell death highly desirable. Several lines of research are now addressing cancer-specific features to specifically target tumor cells, thus reducing adverse effects. In this light, a great deal of attention has been devoted to the metabolic reprogramming occurring in cancer cells, which display increased levels of glycolysis compared with their normal counterparts. We recently showed that inhibition of p38alpha impairs key metabolic functions of colorectal cancer cells, inducing growth arrest, autophagy, and cell death both in vivo and in vitro. These effects are mediated by a switch from hypoxia-inducible factor 1alpha (HIF1alpha) to forkhead transcription factor O (FoxO)-dependent transcription. METHODS: We first characterized p38 expression in OVCAR-3, A2780, and SKOV-3 ovarian cancer cell lines. Then, we treated these cells with the p38alpha/p38beta-specific inhibitor SB202190 and performed a morphological, proliferation, and survival analyses. Finally, we studied HIF1alpha and FoxO3A expressions and signaling pathways to evaluate their role in SB202190-induced effects. RESULTS: p38alpha blockade induces the formation of intracellular autophagic vacuoles and reduces growth and viability of ovarian cancer cells. As in colorectal cancer, the underlying molecular mechanism seems to rely on a shift from HIF1alpha- to FoxO3A-dependent transcription, which is promoted by the activation of the adenosine monophosphate-activated protein kinase pathway. CONCLUSIONS: These data corroborate the hypothesis that pharmacological modulation of genes involved in cancer-specific homeostasis, such as p38alpha, might be exploited to design new therapeutic approaches to cancer treatment.


Assuntos
Carcinoma/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Proteína Forkhead Box O3 , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA