Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 174: 406-424, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33951489

RESUMO

Powder bed fusion (PBF) is a 3D printing method that selectively consolidates powders into 3D objects using a power source. PBF has various derivatives; selective laser sintering/melting, direct metal laser sintering, electron beam melting and multi-jet fusion. These technologies provide a multitude of benefits that make them well suited for the fabrication of bespoke drug-laden formulations, devices and implants. This includes their superior printing resolution and speed, and ability to produce objects without the need for secondary supports, enabling them to precisely create complex products. Herein, this review article outlines the unique applications of PBF 3D printing, including the main principles underpinning its technologies and highlighting their novel pharmaceutical and biomedical applications. The challenges and shortcomings are also considered, emphasising on their effects on the 3D printed products, whilst providing a forward-thinking view.


Assuntos
Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Animais , Desenho de Equipamento , Equipamentos e Provisões , Humanos , Pós , Próteses e Implantes
2.
Polymers (Basel) ; 12(8)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784645

RESUMO

Zero-order release formulations are designed to release a drug at a constant rate over a prolonged time, thus reducing systemic side effects and improving patience adherence to the therapy. Such formulations are traditionally complex to manufacture, requiring multiple steps. In this work, fused deposition modeling (FDM) 3D printing was explored to prepare on-demand printlets (3D printed tablets). The design includes a prolonged release core surrounded by an insoluble shell able to provide zero-order release profiles. The effect of drug loading (10, 25, and 40% w/w paracetamol) on the mechanical and physical properties of the hot melt extruded filaments and 3D printed formulations was evaluated. Two different shell 3D designs (6 mm and 8 mm diameter apertures) together with three different core infills (100, 50, and 25%) were prepared. The formulations showed a range of zero-order release profiles spanning 16 to 48 h. The work has shown that with simple formulation design modifications, it is possible to print extended release formulations with tunable, zero-order release kinetics. Moreover, by using different infill percentages, the dose contained in the printlet can be infinitely adjusted, providing an additive manufacturing route for personalizing medicines to a patient.

3.
Int J Pharm ; 586: 119594, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32622811

RESUMO

Pharmaceutical three-dimensional (3D) printing is a modern fabrication process with the potential to create bespoke drug products of virtually any shape and size from a computer-aided design model. Selective laser sintering (SLS) 3D printing combines the benefits of high printing precision and capability, enabling the manufacture of medicines with unique engineering and functional properties. This article reviews the current state-of-the-art in SLS 3D printing, including the main principles underpinning this technology, and highlights the diverse selection of materials and essential parameters that influence printing. The technical challenges and processing conditions are also considered in the context of their effects on the printed product. Finally, the pharmaceutical applications of SLS 3D printing are covered, providing an emphasis on the advantages the technology offers to drug product manufacturing and personalised medicine.


Assuntos
Preparações Farmacêuticas , Farmácia , Lasers , Impressão Tridimensional , Tecnologia Farmacêutica
4.
Pharmaceutics ; 12(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019101

RESUMO

The aim of this work was to explore the feasibility of using selective laser sintering (SLS) 3D printing (3DP) to fabricate orodispersable printlets (ODPs) containing ondansetron. Ondansetron was first incorporated into drug-cyclodextrin complexes and then combined with the filler mannitol. Two 3D printed formulations with different levels of mannitol were prepared and tested, and a commercial ondansetron orally disintegrating tablet (ODT) product (Vonau® Flash) was also investigated for comparison. Both 3D printed formulations disintegrated at ~15 s and released more than 90% of the drug within 5 min independent of the mannitol content; these results were comparable to those obtained with the commercial product. This work demonstrates the potential of SLS 3DP to fabricate orodispersible printlets with characteristics similar to a commercial ODT, but with the added benefit of using a manufacturing technology able to prepare medicines individualized to the patient.

5.
Pharmaceutics ; 11(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934899

RESUMO

Selective laser sintering (SLS) is a single-step three-dimensional printing (3DP) process that can be leveraged to engineer a wide array of drug delivery systems. The aim of this work was to utilise SLS 3DP, for the first time, to produce small oral dosage forms with modified release properties. As such, paracetamol-loaded 3D printed multiparticulates, termed miniprintlets, were fabricated in 1 mm and 2 mm diameters. Despite their large surface area compared with a conventional monolithic tablet, the ethyl cellulose-based miniprintlets exhibited prolonged drug release patterns. The possibility of producing miniprintlets combining two drugs, namely paracetamol and ibuprofen, was also investigated. By varying the polymer, the dual miniprintlets were programmed to achieve customised drug release patterns, whereby one drug was released immediately from a Kollicoat Instant Release matrix, whilst the effect of the second drug was sustained over an extended time span using ethyl cellulose. Herein, this work has highlighted the versatility of SLS 3DP to fabricate small and intricate formulations containing multiple active pharmaceutical ingredients with distinct release properties.

6.
Int J Pharm ; 547(1-2): 44-52, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-29787894

RESUMO

Three-dimensional printing (3DP) is gaining momentum in the field of pharmaceuticals, offering innovative opportunities for medicine manufacture. Selective laser sintering (SLS) is a novel, high resolution and single-step printing technology that we have recently introduced to the pharmaceutical sciences. The aim of this work was to use SLS 3DP to fabricate printlets (3D printed tablets) with cylindrical, gyroid lattice and bi-layer structures having customisable release characteristics. Paracetamol-loaded constructs from four different pharmaceutical grade polymers including polyethylene oxide, Eudragit (L100-55 and RL) and ethyl cellulose, were created using SLS 3DP. The novel gyroid lattice structure was able to modulate the drug release from all four polymers. This work is the first to demonstrate the feasibility of using SLS to achieve customised drug release properties of several polymers, in a swift, cost-effective manner, avoiding the need to alter the formulation composition. By creating these constructs, it is therefore possible to modify drug release, which in practice, could enable the tailoring of drug performance to the patient simply by changing the 3D design.


Assuntos
Lasers , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Acetaminofen/química , Resinas Acrílicas/química , Celulose/análogos & derivados , Celulose/química , Liberação Controlada de Fármacos , Polietilenoglicóis/química , Polímeros/química , Comprimidos
7.
Int J Pharm ; 541(1-2): 101-107, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29454028

RESUMO

Selective laser sintering (SLS) is a three-dimensional printing (3DP) technology employed to manufacture plastic, metallic or ceramic objects. The aim of this study was to demonstrate the feasibility of using SLS to fabricate novel solid dosage forms with accelerated drug release properties, and with a view to create orally disintegrating formulations. Two polymers (hydroxypropyl methylcellulose (HPMC E5) and vinylpyrrolidone-vinyl acetate copolymer (Kollidon® VA 64)) were separately mixed with 5% paracetamol (used as a model drug) and 3% Candurin® Gold Sheen colorant; the powder mixes were subjected to SLS printing, resulting in the manufacture of printlets (3DP tablets). Modulating the SLS printing parameters altered the release characteristics of the printlets, with faster laser scanning speeds accelerating drug release from the HPMC formulations. The same trend was observed for the Kollidon® based printlets. At a laser scanning speed of 300 mm/s, the Kollidon® printlets exhibited orally disintegrating characteristics by completely dispersing in <4 s in a small volume of water. X-ray micro-CT analysis of these printlets indicated a reduction in their density and an increase in open porosity, therefore, confirming the unique disintegration behaviour of these formulations. The work reported here is the first to demonstrate the feasibility of SLS 3DP to fabricate printlets with accelerated drug release and orally disintegrating properties. This investigation has confirmed that SLS is amenable to the pharmaceutical research of modern medicine manufacture.


Assuntos
Composição de Medicamentos/métodos , Lasers , Impressão Tridimensional/instrumentação , Tecnologia Farmacêutica/métodos , Acetaminofen/administração & dosagem , Acetaminofen/farmacocinética , Administração Oral , Composição de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Excipientes/química , Estudos de Viabilidade , Polímeros/química , Porosidade , Comprimidos , Tecnologia Farmacêutica/instrumentação
8.
Int J Pharm ; 529(1-2): 285-293, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28668582

RESUMO

Selective laser sintering (SLS) 3-dimensional printing is currently used for industrial manufacturing of plastic, metallic and ceramic objects. To date there have been no reports on the use of SLS to fabricate oral drug loaded products; therefore, the aim of this work was to explore the suitability of SLS printing for manufacturing medicines. Two thermoplastic pharmaceutical grade polymers, Kollicoat IR (75% polyvinyl alcohol and 25% polyethylene glycol copolymer) and Eudragit L100-55 (50% methacrylic acid and 50% ethyl acrylate copolymer), with immediate and modified release characteristics respectively, were selected to investigate the versatility of a SLS printer. Each polymer was investigated with three different drug loadings of paracetamol (acetaminophen) (5, 20 and 35%). To aid the sintering process, 3% Candurin® gold sheen was added to each of the powdered formulations. In total, six solid formulations were successfully printed; the printlets (3D printed tablets) were robust, and no evidence of drug degradation was observed. In biorelevant bicarbonate dissolution media, the Kollicoat formulations showed pH-independent release characteristics, with the release rate dependent on the drug content. In the case of the Eudragit formulations, these showed pH-dependent, modified-release profiles independent of drug loading, with complete release being achieved over 12h. In conclusion, this work has demonstrated that SLS is a versatile and practical 3D printing technology which can be applied to the pharmaceutical field, thus widening the armamentarium of 3D printing technologies available for the manufacture of modern medicines.


Assuntos
Impressão Tridimensional , Tecnologia Farmacêutica , Resinas Acrílicas , Composição de Medicamentos , Polivinil , Comprimidos
9.
Int J Pharm ; 527(1-2): 21-30, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28502898

RESUMO

The aim of this study was to manufacture 3D printed tablets (printlets) from enteric polymers by single filament fused deposition modeling (FDM) 3D printing (3DP). Hot melt extrusion was used to generate paracetamol-loaded filaments from three different grades of the pharmaceutical excipient hypromellose acetate succinate (HPMCAS), grades LG, MG and HG. One-step 3DP was used to process these filaments into enteric printlets incorporating up to 50% drug loading with two different infill percentages (20 and 100%). X-ray Micro Computed Tomography (Micro-CT) analysis revealed that printlets with 20% infill had cavities in the core compared to 100% infill, and that the density of the 50% drug loading printlets was higher than the equivalent formulations loaded with 5% drug. In biorelevant bicarbonate dissolution media, drug release from the printlets was dependent on the polymer composition, drug loading and the internal structure of the formulations. All HPMCAS-based printlets showed delayed drug release properties, and in the intestinal conditions, drug release was faster from the printlets prepared with polymers with a lower pH-threshold: HPMCAS LG > HPMCAS MG > HPMCAS HG. These results confirm that FDM 3D printing makes it possible not only to manufacture delayed release printlets without the need for an outer enteric coating, but it is also feasible to adapt the release profile in response to the personal characteristics of the patient, realizing the full potential of additive manufacturing in the development of personalised dose medicines.


Assuntos
Liberação Controlada de Fármacos , Excipientes/química , Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA