Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; : e0157023, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727224

RESUMO

Xeruborbactam is a newly developed ß-lactamase inhibitor designed for metallo-ß-lactamases (MBLs). This study assessed the relative inhibitory properties of this novel inhibitor in comparison with another MBL inhibitor, namely taniborbactam (TAN), against a wide range of acquired MBL produced either in Escherichia coli or Pseudomonas aeruginosa. As observed with taniborbactam, the combination of xeruborbactam (XER) with ß-lactams, namely, ceftazidime, cefepime and meropenem, led to significantly decreased MIC values for a wide range of B1-type MBL-producing E. coli, including most recombinant strains producing NDM, VIM, IMP, GIM-1, and DIM-1 enzymes. Noteworthily, while TAN-based combinations significantly reduced MIC values of ß-lactams for MBL-producing P. aeruginosa recombinant strains, those with XER were much less effective. We showed that this latter feature was related to the MexAB-OprM efflux pump significantly impacting MIC values when testing XER-based combinations in P. aeruginosa. The relative inhibitory concentrations (IC50 values) were similar for XER and TAN against NDM and VIM enzymes. Noteworthily, XER was effective against NDM-9, NDM-30, VIM-83, and most of IMP enzymes, although those latter enzymes were considered resistant to TAN. However, no significant inhibition was observed with XER against IMP-10, SPM-1, and SIM-1 as well as the representative subclass B2 and B3 enzymes, PFM-1 and AIM-1. The determination of the constant inhibition (Ki) of XER revealed a much higher value against IMP-10 than against NDM-1, VIM-2, and IMP-1. Hence, IMP-10 that differs from IMP-1 by a single amino-acid substitution (Val67Phe) can, therefore, be considered resistant to XER.

2.
Diagn Microbiol Infect Dis ; 109(4): 116356, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763036

RESUMO

Plasmid-encoded DHA-type AmpCs have been extensively reported in Enterobacterales. The expression of the genes encoding these plasmid-mediated enzymes are inducible and these enzymes are capable of conferring resistance to a wide spectrum of beta-lactams including penicillins and broad-spectrum cephalosporins. The identification of infections caused by AmpC-producing bacteria is a necessity, both for infection control/epidemiology purposes and to inform treatment choices. A common testing method for AmpC production in the clinical laboratory setting is to supplement Mueller-Hinton agar plates used for antibiotic disk diffusion with cloxacillin, a potent inhibitor of AmpC enzymes. Here we describe a novel DHA variant, produced by a clinical Escherichia coli isolate, which is resistant to cloxacillin inhibition.


Assuntos
Antibacterianos , Proteínas de Bactérias , Cloxacilina , Escherichia coli , Testes de Sensibilidade Microbiana , beta-Lactamases , Cloxacilina/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico
5.
Eur J Clin Microbiol Infect Dis ; 43(3): 551-557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233610

RESUMO

OBJECTIVES: The occurrence of metallo-beta-lactamase-producing Pseudomonas aeruginosa (MBL-PA) isolates is increasing globally, including in Switzerland. The aim of this study was to characterise, phenotypically and genotypically, the MBL-PA isolates submitted to the Swiss National Reference Center for Emerging Antibiotic Resistance (NARA) reference laboratory over a 12-month period from July 2022 to July 2023. METHODS: Thirty-nine non-duplicate MBL-PA Isolates were submitted to NARA over the study period from across Switzerland. Susceptibility was determined by broth microdilution according to EUCAST methodology. Whole-genome sequencing was performed on 34 isolates. Sequence types (STs) and resistance genes were ascertained using the Centre for Genomic Epidemiology platform. MBL genes, blaNDM-1, blaIMP-1, and blaVIM-2, were cloned into vector pUCP24 and transformed into P. aeruginosa PA14. RESULTS: The most prevalent MBL types identified in this study were VIM (21/39; 53.8%) followed by NDM (11/39; 28.2%), IMP (6/39; 15.4%), and a single isolate produced both VIM and NDM enzymes. WGS identified 13 different STs types among the 39 isolates. They all exhibited resistance to cephalosporins, carbapenems, and the beta-lactam-beta-lactamase inhibitor combinations, ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam, and 8 isolates were cefiderocol (FDC) resistant. Recombinant P. aeruginosa strains producing blaNDM-1, blaIMP-1, and blaVIM-2 exhibited FDC MICs of 16, 8, and 1 mg/L, respectively. CONCLUSIONS: This study showed that the MBL-PA in Switzerland could be attributed to the wide dissemination of high-risk clones that accounted for most isolates in this study. Although FDC resistance was only found in 8 isolates, MBL carriage was shown to be a major contributor to this phenotype.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Suíça/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA