Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729111

RESUMO

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Assuntos
Proteínas Fúngicas , Oryza , Doenças das Plantas , Fosforilação , Oryza/microbiologia , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Transdução de Sinais
2.
J Bacteriol ; 205(6): e0013523, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37249447

RESUMO

In Streptomyces, the Bld (Bald) regulators control formation of the reproductive aerial hyphae. The functions of some of these regulators have been well characterized, but BldB has remained enigmatic. In addition to the bldB gene itself, Streptomyces venezuelae has 10 paralogs of bldB that sit next to paralogs of whiJ and abaA. Transcriptome sequencing (RNA-seq) revealed that loss of BldB function causes the dramatic transcriptional upregulation of the abaA paralogs and a novel inhibitor of sporulation, iosA, and that cooverexpression of just two of these genes, iosA and abaA6, was sufficient to recapitulate the bldB mutant phenotype. Further RNA-seq analysis showed that the transcription factor WhiJ9 is required for the activation of iosA seen in the bldB mutant, and biochemical studies showed that WhiJ9 mediates the activation of iosA expression by binding to direct repeats in the iosA-whiJ9 intergenic region. BldB and BldB9 hetero-oligomerize, providing a potential link between BldB and the iosA-whiJ9-bldB9 locus. This work greatly expands our overall understanding of the global effects of the BldB developmental regulator. IMPORTANCE To reproduce and disperse, the filamentous bacterium Streptomyces develops specialized reproductive structures called aerial hyphae. The formation of these structures is controlled by the bld (bald) genes, many of which encode transcription factors whose functions have been characterized. An exception is BldB, a protein whose biochemical function is unknown. In this study, we gain insight into the global effects of BldB function by examining the genome-wide transcriptional effects of deleting bldB. We identify a small set of genes that are dramatically upregulated in the absence of BldB. We show that their overexpression causes the bldB phenotype and characterize a transcription factor that mediates the upregulation of one of these target genes. Our results provide new insight into how BldB influences Streptomyces development.


Assuntos
Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fenótipo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
3.
Proc Natl Acad Sci U S A ; 120(11): e2220785120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888660

RESUMO

Studies of transcriptional initiation in different bacterial clades reveal diverse molecular mechanisms regulating this first step in gene expression. The WhiA and WhiB factors are both required to express cell division genes in Actinobacteria and are essential in notable pathogens such as Mycobacterium tuberculosis. The WhiA/B regulons and binding sites have been elucidated in Streptomyces venezuelae (Sven), where they coordinate to activate sporulation septation. However, how these factors cooperate at the molecular level is not understood. Here we present cryoelectron microscopy structures of Sven transcriptional regulatory complexes comprising RNA polymerase (RNAP) σA-holoenzyme and WhiA and WhiB, in complex with the WhiA/B target promoter sepX. These structures reveal that WhiB binds to domain 4 of σA (σA4) of the σA-holoenzyme, bridging an interaction with WhiA while making non-specific contacts with the DNA upstream of the -35 core promoter element. The N-terminal homing endonuclease-like domain of WhiA interacts with WhiB, while the WhiA C-terminal domain (WhiA-CTD) makes base-specific contacts with the conserved WhiA GACAC motif. Notably, the structure of the WhiA-CTD and its interactions with the WhiA motif are strikingly similar to those observed between σA4 housekeeping σ-factors and the -35 promoter element, suggesting an evolutionary relationship. Structure-guided mutagenesis designed to disrupt these protein-DNA interactions reduces or abolishes developmental cell division in Sven, confirming their significance. Finally, we compare the architecture of the WhiA/B σA-holoenzyme promoter complex with the unrelated but model CAP Class I and Class II complexes, showing that WhiA/WhiB represent a new mechanism in bacterial transcriptional activation.


Assuntos
Proteínas de Bactérias , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microscopia Crioeletrônica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Fator sigma/genética , Fator sigma/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
J Bacteriol ; 204(8): e0010822, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35862789

RESUMO

DNA damage triggers a widely conserved stress response in bacteria called the SOS response, which involves two key regulators, the activator RecA and the transcriptional repressor LexA. Despite the wide conservation of the SOS response, the number of genes controlled by LexA varies considerably between different organisms. The filamentous soil-dwelling bacteria of the genus Streptomyces contain LexA and RecA homologs, but their roles in Streptomyces have not been systematically studied. Here, we demonstrate that RecA and LexA are required for the survival of Streptomyces venezuelae during DNA-damaging conditions and for normal development during unperturbed growth. Monitoring the activity of a fluorescent recA promoter fusion and LexA protein levels revealed that the activation of the SOS response is delayed in S. venezuelae. By combining global transcriptional profiling and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we determined the LexA regulon and defined the core set of DNA damage repair genes that are expressed in response to treatment with the DNA-alkylating agent mitomycin C. Our results show that DNA damage-induced degradation of LexA results in the differential regulation of LexA target genes. Using surface plasmon resonance, we further confirmed the LexA DNA binding motif (SOS box) and demonstrated that LexA displays tight but distinct binding affinities to its target promoters, indicating a graded response to DNA damage. IMPORTANCE The transcriptional regulator LexA functions as a repressor of the bacterial SOS response, which is induced under DNA-damaging conditions. This results in the expression of genes important for survival and adaptation. Here, we report the regulatory network controlled by LexA in the filamentous antibiotic-producing Streptomyces bacteria and establish the existence of the SOS response in Streptomyces. Collectively, our work reveals significant insights into the DNA damage response in Streptomyces that will promote further studies to understand how these important bacteria adapt to their environment.


Assuntos
Proteínas de Bactérias , Streptomyces , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Recombinases Rec A/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
7.
Nat Commun ; 13(1): 71, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013186

RESUMO

Filamentous actinobacteria such as Streptomyces undergo two distinct modes of cell division, leading to partitioning of growing hyphae into multicellular compartments via cross-walls, and to septation and release of unicellular spores. Specific determinants for cross-wall formation and the importance of hyphal compartmentalization for Streptomyces development are largely unknown. Here we show that SepX, an actinobacterial-specific protein, is crucial for both cell division modes in Streptomyces venezuelae. Importantly, we find that sepX-deficient mutants grow without cross-walls and that this substantially impairs the fitness of colonies and the coordinated progression through the developmental life cycle. Protein interaction studies and live-cell imaging suggest that SepX contributes to the stabilization of the divisome, a mechanism that also requires the dynamin-like protein DynB. Thus, our work identifies an important determinant for cell division in Streptomyces that is required for cellular development and sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular/fisiologia , Hifas/metabolismo , Esporos Bacterianos/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Fenômenos Biológicos , Parede Celular , Hifas/citologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Esporos Bacterianos/genética , Streptomyces/citologia , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
8.
Elife ; 102021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34792466

RESUMO

Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs.


Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques ­ for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.


Assuntos
Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas fluorescens/genética , Solanum tuberosum/microbiologia , Streptomyces/fisiologia , Cianeto de Hidrogênio/metabolismo , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Pseudomonas fluorescens/metabolismo
9.
Commun Biol ; 4(1): 1216, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686772

RESUMO

Fungi have evolved an array of spore discharge and dispersal processes. Here, we developed a theoretical model that explains the ejection mechanics of aeciospore liberation in the stem rust pathogen Puccinia graminis. Aeciospores are released from cluster cups formed on its Berberis host, spreading early-season inoculum into neighboring small-grain crops. Our model illustrates that during dew or rainfall, changes in aeciospore turgidity exerts substantial force on neighboring aeciospores in cluster cups whilst gaps between spores become perfused with water. This perfusion coats aeciospores with a lubrication film that facilitates expulsion, with single aeciospores reaching speeds of 0.053 to 0.754 m·s-1. We also used aeciospore source strength estimates to simulate the aeciospore dispersal gradient and incorporated this into a publicly available web interface. This aids farmers and legislators to assess current local risk of dispersal and facilitates development of sophisticated epidemiological models to potentially curtail stem rust epidemics originating on Berberis.


Assuntos
Umidade , Puccinia/fisiologia , Esporos Fúngicos/fisiologia
10.
Nat Commun ; 12(1): 5222, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471115

RESUMO

Bacteria of the genus Streptomyces have a linear chromosome, with a core region and two 'arms'. During their complex life cycle, these bacteria develop multi-genomic hyphae that differentiate into chains of exospores that carry a single copy of the genome. Sporulation-associated cell division requires chromosome segregation and compaction. Here, we show that the arms of Streptomyces venezuelae chromosomes are spatially separated at entry to sporulation, but during sporogenic cell division they are closely aligned with the core region. Arm proximity is imposed by segregation protein ParB and condensin SMC. Moreover, the chromosomal terminal regions are organized into distinct domains by the Streptomyces-specific HU-family protein HupS. Thus, as seen in eukaryotes, there is substantial chromosomal remodelling during the Streptomyces life cycle, with the chromosome undergoing rearrangements from an 'open' to a 'closed' conformation.


Assuntos
Cromossomos Bacterianos/fisiologia , Streptomyces/genética , Streptomyces/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica , Hifas/genética
12.
Elife ; 102021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729912

RESUMO

Bacterial cell division is driven by the polymerization of the GTPase FtsZ into a contractile structure, the so-called Z-ring. This essential process involves proteins that modulate FtsZ dynamics and hence the overall Z-ring architecture. Actinobacteria like Streptomyces and Mycobacterium lack known key FtsZ-regulators. Here we report the identification of SepH, a conserved actinobacterial protein that directly regulates FtsZ dynamics. We show that SepH is crucially involved in cell division in Streptomyces venezuelae and that it binds FtsZ via a conserved helix-turn-helix motif, stimulating the assembly of FtsZ protofilaments. Comparative in vitro studies using the SepH homolog from Mycobacterium smegmatis further reveal that SepH can also bundle FtsZ protofilaments, indicating an additional Z-ring stabilizing function in vivo. We propose that SepH plays a crucial role at the onset of cytokinesis in actinobacteria by promoting the assembly of FtsZ filaments into division-competent Z-rings that can go on to mediate septum synthesis.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular/genética , Proteínas do Citoesqueleto/genética , Mycobacterium smegmatis/genética , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(13): 7392-7400, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32188788

RESUMO

Antibiotic-producing Streptomyces use the diadenylate cyclase DisA to synthesize the nucleotide second messenger c-di-AMP, but the mechanism for terminating c-di-AMP signaling and the proteins that bind the molecule to effect signal transduction are unknown. Here, we identify the AtaC protein as a c-di-AMP-specific phosphodiesterase that is also conserved in pathogens such as Streptococcus pneumoniae and Mycobacterium tuberculosis AtaC is monomeric in solution and binds Mn2+ to specifically hydrolyze c-di-AMP to AMP via the intermediate 5'-pApA. As an effector of c-di-AMP signaling, we characterize the RCK_C domain protein CpeA. c-di-AMP promotes interaction between CpeA and the predicted cation/proton antiporter, CpeB, linking c-di-AMP signaling to ion homeostasis in Actinobacteria. Hydrolysis of c-di-AMP is critical for normal growth and differentiation in Streptomyces, connecting ionic stress to development. Thus, we present the discovery of two components of c-di-AMP signaling in bacteria and show that precise control of this second messenger is essential for ion balance and coordinated development in Streptomyces.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Streptomyces/metabolismo , Monofosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Hidrólise , Mycobacterium tuberculosis/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais/fisiologia , Streptococcus pneumoniae/metabolismo
14.
Mol Cell ; 77(3): 586-599.e6, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810759

RESUMO

Streptomyces are our primary source of antibiotics, produced concomitantly with the transition from vegetative growth to sporulation in a complex developmental life cycle. We previously showed that the signaling molecule c-di-GMP binds BldD, a master repressor, to control initiation of development. Here we demonstrate that c-di-GMP also intervenes later in development to control differentiation of the reproductive hyphae into spores by arming a novel anti-σ (RsiG) to bind and sequester a sporulation-specific σ factor (σWhiG). We present the structure of the RsiG-(c-di-GMP)2-σWhiG complex, revealing an unusual, partially intercalated c-di-GMP dimer bound at the RsiG-σWhiG interface. RsiG binds c-di-GMP in the absence of σWhiG, employing a novel E(X)3S(X)2R(X)3Q(X)3D motif repeated on each helix of a coiled coil. Further studies demonstrate that c-di-GMP is essential for RsiG to inhibit σWhiG. These findings reveal a newly described control mechanism for σ-anti-σ complex formation and establish c-di-GMP as the central integrator of Streptomyces development.


Assuntos
GMP Cíclico/análogos & derivados , Fator sigma/metabolismo , Streptomyces/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , GMP Cíclico/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Domínios Proteicos , RNA Bacteriano/metabolismo , Esporos Bacterianos/metabolismo , Streptomyces/genética
15.
mBio ; 10(1)2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723132

RESUMO

Streptomycetes are filamentous bacteria that differentiate by producing spore-bearing reproductive structures called aerial hyphae. The transition from vegetative to reproductive growth is controlled by the bld (bald) loci, and mutations in bld genes prevent the formation of aerial hyphae, either by blocking entry into development (typically mutations in activators) or by inducing precocious sporulation in the vegetative mycelium (typically mutations in repressors). One of the bld genes, bldC, encodes a 68-residue DNA-binding protein related to the DNA-binding domain of MerR-family transcription factors. Recent work has shown that BldC binds DNA by a novel mechanism, but there is less insight into its impact on Streptomyces development. Here we used ChIP-seq coupled with RNA-seq to define the BldC regulon in the model species Streptomyces venezuelae, showing that BldC can function both as a repressor and as an activator of transcription. Using electron microscopy and time-lapse imaging, we show that bldC mutants are bald because they initiate development prematurely, bypassing the formation of aerial hyphae. This is consistent with the premature expression of BldC target genes encoding proteins with key roles in development (e.g., whiD, whiI, sigF), chromosome condensation and segregation (e.g., smeA-sffA, hupS), and sporulation-specific cell division (e.g., dynAB), suggesting that BldC-mediated repression is critical to maintain a sustained period of vegetative growth prior to sporulation. We discuss the possible significance of BldC as an evolutionary link between MerR family transcription factors and DNA architectural proteins.IMPORTANCE Understanding the mechanisms that drive bacterial morphogenesis depends on the dissection of the regulatory networks that underpin the cell biological processes involved. Recently, Streptomyces venezuelae has emerged as an attractive model system for the study of morphological differentiation in Streptomyces This has led to significant progress in identifying the genes controlled by the transcription factors that regulate aerial mycelium formation (Bld regulators) and sporulation (Whi regulators). Taking advantage of S. venezuelae, we used ChIP-seq coupled with RNA-seq to identify the genes directly under the control of BldC. Because S. venezuelae sporulates in liquid culture, the complete spore-to-spore life cycle can be examined using time-lapse microscopy, and we applied this technique to the bldC mutant. These combined approaches reveal BldC to be a member of an emerging class of Bld regulators that function principally to repress key sporulation genes, thereby extending vegetative growth and blocking the onset of morphological differentiation.


Assuntos
Regulação Fúngica da Expressão Gênica , Streptomyces/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , DNA Bacteriano/metabolismo , Microscopia Eletrônica , Ligação Proteica , Regulon , Análise de Sequência de DNA , Análise de Sequência de RNA , Streptomyces/genética , Streptomyces/ultraestrutura , Imagem com Lapso de Tempo
16.
Proc Natl Acad Sci U S A ; 114(30): E6176-E6183, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28687675

RESUMO

During sporulation, the filamentous bacteria Streptomyces undergo a massive cell division event in which the synthesis of ladders of sporulation septa convert multigenomic hyphae into chains of unigenomic spores. This process requires cytokinetic Z-rings formed by the bacterial tubulin homolog FtsZ, and the stabilization of the newly formed Z-rings is crucial for completion of septum synthesis. Here we show that two dynamin-like proteins, DynA and DynB, play critical roles in this process. Dynamins are a family of large, multidomain GTPases involved in key cellular processes in eukaryotes, including vesicle trafficking and organelle division. Many bacterial genomes encode dynamin-like proteins, but the biological function of these proteins has remained largely enigmatic. Using a cell biological approach, we show that the two Streptomyces dynamins specifically localize to sporulation septa in an FtsZ-dependent manner. Moreover, dynamin mutants have a cell division defect due to the decreased stability of sporulation-specific Z-rings, as demonstrated by kymographs derived from time-lapse images of FtsZ ladder formation. This defect causes the premature disassembly of individual Z-rings, leading to the frequent abortion of septum synthesis, which in turn results in the production of long spore-like compartments with multiple chromosomes. Two-hybrid analysis revealed that the dynamins are part of the cell division machinery and that they mediate their effects on Z-ring stability during developmentally controlled cell division via a network of protein-protein interactions involving DynA, DynB, FtsZ, SepF, SepF2, and the FtsZ-positioning protein SsgB.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas do Citoesqueleto/química , Dinaminas/fisiologia , Streptomyces/fisiologia , Proteínas de Bactérias/química , Divisão Celular , Dinaminas/química
17.
mBio ; 8(3)2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611250

RESUMO

The major oxidative stress response in Streptomyces is controlled by the sigma factor SigR and its cognate antisigma factor RsrA, and SigR activity is tightly controlled through multiple mechanisms at both the transcriptional and posttranslational levels. Here we show that sigR has a highly unusual GTC start codon and that this leads to another level of SigR regulation, in which SigR translation is repressed by translation initiation factor 3 (IF3). Changing the GTC to a canonical start codon causes SigR to be overproduced relative to RsrA, resulting in unregulated and constitutive expression of the SigR regulon. Similarly, introducing IF3* mutations that impair its ability to repress SigR translation has the same effect. Thus, the noncanonical GTC sigR start codon and its repression by IF3 are critical for the correct and proper functioning of the oxidative stress regulatory system. sigR and rsrA are cotranscribed and translationally coupled, and it had therefore been assumed that SigR and RsrA are produced in stoichiometric amounts. Here we show that RsrA can be transcribed and translated independently of SigR, present evidence that RsrA is normally produced in excess of SigR, and describe the factors that determine SigR-RsrA stoichiometry.IMPORTANCE In all sigma factor-antisigma factor regulatory switches, the relative abundance of the two proteins is critical to the proper functioning of the system. Many sigma-antisigma operons are cotranscribed and translationally coupled, leading to a generic assumption that the sigma and antisigma factors are produced in a fixed 1:1 ratio. In the case of sigR-rsrA, we show instead that the antisigma factor is produced in excess over the sigma factor, providing a buffer to prevent spurious release of sigma activity. This excess arises in part because sigR has an extremely rare noncanonical GTC start codon, and as a result, SigR translation initiation is repressed by IF3. This finding highlights the potential significance of noncanonical start codons, very few of which have been characterized experimentally. It also emphasizes the limitations of predicting start codons using bioinformatic approaches, which rely heavily on the assumption that ATG, GTG, and TTG are the only permissible start codons.


Assuntos
Códon de Iniciação , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Fator de Iniciação 3 em Procariotos/metabolismo , Fator sigma/metabolismo , Streptomyces/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Óperon , Fator de Iniciação 3 em Procariotos/genética , Regulon , Fator sigma/química , Streptomyces/fisiologia , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Nucleic Acids Res ; 45(11): 6923-6933, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28449057

RESUMO

Streptomyces are ubiquitous soil bacteria that undergo a complex developmental transition coinciding with their production of antibiotics. This transition is controlled by binding of a novel tetrameric form of the second messenger, 3΄-5΄ cyclic diguanylic acid (c-di-GMP) to the master repressor, BldD. In all domains of life, nucleotide-based second messengers allow a rapid integration of external and internal signals into regulatory pathways that control cellular responses to changing conditions. c-di-GMP can assume alternative oligomeric states to effect different functions, binding to effector proteins as monomers, intercalated dimers or, uniquely in the case of BldD, as a tetramer. However, at physiological concentrations c-di-GMP is a monomer and little is known about how higher oligomeric complexes assemble on effector proteins and if intermediates in assembly pathways have regulatory significance. Here, we show that c-di-GMP binds BldD using an ordered, sequential mechanism and that BldD function necessitates the assembly of the BldD2-(c-di-GMP)4 complex.


Assuntos
Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Proteínas Repressoras/química , Streptomyces , Sítios de Ligação , Cristalografia por Raios X , GMP Cíclico/química , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína
19.
Mol Microbiol ; 104(5): 700-711, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28271577

RESUMO

BldD-(c-di-GMP) sits on top of the regulatory network that controls differentiation in Streptomyces, repressing a large regulon of developmental genes when the bacteria are growing vegetatively. In this way, BldD functions as an inhibitor that blocks the initiation of sporulation. Here, we report the identification and characterisation of BldO, an additional developmental repressor that acts to sustain vegetative growth and prevent entry into sporulation. However, unlike the pleiotropic regulator BldD, we show that BldO functions as the dedicated repressor of a single key target gene, whiB, and that deletion of bldO or constitutive expression of whiB is sufficient to induce precocious hypersporulation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Bacterianos , Regulon , Esporos Bacterianos
20.
Mol Plant Microbe Interact ; 29(11): 854-861, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27831211

RESUMO

Herbivore selection of plant hosts and plant responses to insect colonization have been subjects of intense investigations. A growing body of evidence suggests that, for successful colonization to occur, (effector/virulence) proteins in insect saliva must modulate plant defense responses to the benefit of the insect. A range of insect saliva proteins that modulate plant defense responses have been identified, but there is no direct evidence that these proteins are delivered into specific plant tissues and enter plant cells. Aphids and other sap-sucking insects of the order Hemiptera use their specialized mouthparts (stylets) to probe plant mesophyll cells until they reach the phloem cells for long-term feeding. Here, we show, by immunogold-labeling of ultrathin sections of aphid feeding sites, that an immuno-suppressive aphid effector localizes in the cytoplasm of mesophyll cells near aphid stylets but not in cells further away from aphid feeding sites. In contrast, another aphid effector protein localizes in the sheaths composed of gelling saliva that surround the aphid stylets. Thus, insects deliver effectors directly into plant tissue. Moreover, different aphid effectors locate extracellularly in the sheath saliva or are introduced into the cytoplasm of plant cells. [Formula: see text] Copyright © 2016 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license .


Assuntos
Afídeos/fisiologia , Proteínas de Insetos/metabolismo , Plantas/ultraestrutura , Animais , Citosol/metabolismo , Citosol/ultraestrutura , Herbivoria , Células do Mesofilo/metabolismo , Células do Mesofilo/parasitologia , Células do Mesofilo/ultraestrutura , Floema/metabolismo , Floema/parasitologia , Floema/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Folhas de Planta/ultraestrutura , Plantas/metabolismo , Plantas/parasitologia , Saliva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA