RESUMO
Immune homeostasis is key to guarantee that the immune system can elicit effector functions against pathogens and at the same time raise tolerance towards other antigens. A disturbance of this delicate balance may underlie or at least trigger pathologies. Endocrine disrupting chemicals (EDCs) are increasingly recognized as risk factors for immune dysregulation. However, the immunotoxic potential of specific EDCs and their mixtures is still poorly understood. Thus, we aimed to investigate the effect of bisphenol A (BPA) and benzophenone-3 (BP-3), alone and in combination, on in vitro differentiation of T helper (TH)17 cells and regulatory T (Treg) cells. Naïve T cells were isolated from mouse lymphoid tissues and differentiated into the respective TH population in the presence of 0.001-10 µM BP-3 and/or 0.01-100 µM BPA. Cell viability, proliferation and the expression of TH lineage specific transcription factors and cytokines was measured by flow cytometry and CBA/ELISA. Moreover, the transcription of hormone receptors as direct targets of EDCs was quantified by RT-PCR. We found that the highest BPA concentration adversely affected TH cell viability and proliferation. Moreover, the general differentiation potential of both TH populations was not altered in the presence of both EDCs. However, EDC exposure modulated the emergence of TH17 and Treg cell intermediate states. While BPA and BP-3 promoted the development of TH1-like TH17 cells under TH17-differentiating conditions, TH2-like Treg cells occurred under Treg polarization. Interestingly, differential effects could be observed in mixtures of the two tested compounds compared with the individual compounds. Notably, estrogen receptor ß expression was decreased under TH17-differentiating conditions in the presence of BPA and BP-3 as mixture. In conclusion, our study provides solid evidence for both, the immune disruptive potential and the existence of cumulative effects of real nature EDC mixtures on T cell in vitro differentiation.
Assuntos
Compostos Benzidrílicos , Benzofenonas , Diferenciação Celular , Fenóis , Linfócitos T Reguladores , Células Th17 , Fenóis/toxicidade , Fenóis/farmacologia , Animais , Compostos Benzidrílicos/toxicidade , Benzofenonas/farmacologia , Benzofenonas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Camundongos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/citologia , Células Th17/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/farmacologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Células CultivadasRESUMO
The enzyme heme oxygenase-1 (HO-1) is pivotal in reproductive processes, particularly in placental and vascular development. This study investigated the role of HO-1 and its byproduct, carbon monoxide (CO), in trophoblastic spheroid implantation. In order to deepen our understanding of the role of HO-1 during implantation, we conducted in vivo experiments on virgin and pregnant mice, aiming to unravel the cellular and molecular mechanisms. Using siRNA, HO-1 was knocked down in JEG-3 and BeWo cells and trophoblastic spheroids were generated with or without CO treatment. Adhesion assays were performed after transferring the spheroids to RL-95 endometrial epithelial cell layers. Additionally, angiogenesis, stress, and toxicity RT2-Profiler™ PCR SuperArray and PCR analyses were performed in uterine murine samples. HO-1 knockdown by siRNA impeded implantation in the 3D culture model, but this effect could be reversed by CO. Uteruses from virgin Hmox1-/- females exhibited altered expression of angiogenesis and stress markers. Furthermore, there was a distinct expression pattern of cytokines and chemokines in uteruses from gestation day 14 in Hmox1-/- females compared to Hmox1+/+ females. This study strongly supports the essential role of HO-1 during implantation. Moreover, CO appears to have the potential to compensate for the lack of HO-1 during the spheroid attachment process. The absence of HO-1 results in dysregulation of angiogenesis and stress-related genes in the uterus, possibly contributing to implantation failure.
Assuntos
Heme Oxigenase-1 , Placenta , Gravidez , Feminino , Camundongos , Animais , Heme Oxigenase-1/metabolismo , Placenta/metabolismo , Linhagem Celular Tumoral , Angiogênese , Útero/metabolismo , RNA Interferente Pequeno/metabolismo , Expressão GênicaRESUMO
Endocrine disrupting chemicals (EDCs) possess the capability to interfere with the endocrine system by binding to hormone receptors, for example on immune cells. Specific effects have already been described for individual substances, but the impact of exposure to chemical mixtures during pregnancy on maternal immune regulation, placentation and fetal development is not known. In this study, we aimed to investigate the combined effects of two widespread EDCs, bisphenol A (BPA) and benzophenone-3 (BP-3), at allowed concentrations on crucial pregnancy processes such as implantation, placentation, uterine immune cell populations and fetal growth. From gestation day (gd) 0 to gd10, female mice were exposed to 4 µg/kg/d BPA, 50 mg/kg/d BP-3 or a BPA/BP-3 mixture. High frequency ultrasound and Doppler measurements were used to determine intrauterine fetal development and hemodynamic parameters. Furthermore, uterine spiral artery remodeling and placental mRNA expression were studied via histology and CHIP-RT-PCR, respectively. Effects of EDC exposure on multiple uterine immune cell populations were investigated using flow cytometry. We found that exposure to BP-3 caused intrauterine growth restriction in offspring at gd14, while BPA and BPA/BP-3 mixture caused varying effects. Moreover, placental morphology at gd12 and placental efficiency at gd14 were altered upon BP-3 exposure. Placental gene transcription was altered particularly in female offspring after in utero exposure to BP-3. Flow cytometry analyses revealed an increase in uterine T cells and NK cells in BPA and BPA/BP-3-treated dams at gd14. Doppler measurements revealed no effect on uterine hemodynamic parameters and spiral artery remodeling was not affected following EDC exposure. Our results provide evidence that exposure to BPA and BP-3 during early gestation affects fetal development in a sex-dependent manner, placental function and immune cell frequencies at the feto-maternal interface. These results call for inclusion of studies addressing pregnancy in the risk assessment of environmental chemicals.
Assuntos
Benzofenonas , Fenóis , Placenta , Placentação , Gravidez , Feminino , Camundongos , Animais , Placenta/metabolismo , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo , Desenvolvimento FetalRESUMO
Ovarian cancer has the highest mortality rate among female reproductive tract malignancies. A complex network, including the interaction between tumor and immune cells, regulates the tumor microenvironment, survival, and growth. The role of mast cells (MCs) in ovarian tumor pathophysiology is poorly understood. We aimed to understand the effect of MCs on tumor cell migration and growth using in vitro and in vivo approaches. Wound healing assays using human tumor cell lines (SK-OV-3, OVCAR-3) and human MCs (HMC-1) were conducted. Murine ID8 tumor cells were injected into C57BL6/J wildtype (WT) and MC-deficient C57BL/6-KitW-sh/W-sh (KitW-sh) mice. Reconstitution of KitW-sh was performed by the transfer of WT bone marrow-derived MCs (BMMCs). Tumor development was recorded by high-frequency ultrasonography. In vitro, we observed a diminished migration of human ovarian tumor cells upon direct or indirect MC contact. In vivo, application of ID8 cells into KitW-sh mice resulted in significantly increased tumor growth compared to C57BL6/J mice. Injection of BMMCs into KitW-sh mice reconstituted MCs and restored tumor growth. Our data show that MCs have a suppressive effect on ovarian tumor growth and may serve as a new therapeutic target.
RESUMO
The past decade has been characterized by increased awareness and de-stigmatization of mental health issues, in particular the most common neuropsychiatric disorders depression and anxiety. Further, with growing understanding of neurodevelopmental disorders such as attention deficit and hyperactivity disorder and autism spectrum disorder, the number of diagnosed patients has increased. The pathogenesis of these behavioral disorders is multifactorial and early-life exposure to environmental chemicals has been proposed to be a relevant risk factor that might mediate these effects by disturbances on the gut-brain-axis. However, for glyphosate, the most widely used pesticide worldwide, there are only limited and inconsistent findings that link chronic low-dose exposure in particular during early life to neurobehavioral disorders. Here, we explored the impact of maternal oral glyphosate exposure (0.5 and 50 mg/kg body weight/day) during pregnancy and the lactational period on offspring's behavior, brain gene expression and gut microbiota using a cross-generational mouse model. Behavioral analyses revealed a depression- and anxiety-like behavior as well as social deficits most notably in adult female offspring of glyphosate-exposed dams. Furthermore, the expression of tryptophan hydroxylase 2, an enzyme discussed to be linked to behavioral problems, was reduced in the hippocampus of female offspring and correlated to a glyphosate-induced DNA hypermethylation of the gene. Moreover, maternal glyphosate exposure significantly altered the gut microbiota in the female offspring including a decreased abundance of Akkermansia and increased abundance of Alistipes and Blautia, bacteria involved in tryptophan metabolism and associated with depression- and anxiety-like disorders. Our results suggest that glyphosate might influence the gut-brain axis crosstalk following in-utero and lactational exposure. This study underlines the importance of understanding the impact of exposure to pesticides on the gut-brain axis and further emphasizes the need for microbiome analyses to be compulsorily included in health risk assessments of pesticides.
Assuntos
Transtorno do Espectro Autista , Praguicidas , Humanos , Adulto , Gravidez , Animais , Camundongos , Feminino , Exposição Materna/efeitos adversos , Depressão/induzido quimicamente , Eixo Encéfalo-Intestino , Ansiedade/induzido quimicamente , GlifosatoRESUMO
Standard agarose gel electrophoresis is a widely used method to analyse diversity of nucleic acids. Certain conditions, however, may give rise to artefactual bands. We report on artefactual bands frequently occurring, especially when partially homologous nucleic acids, such as splicing variants of DNA transcripts, are analysed simultaneously. Interestingly, to some extent agarose concentration may influence the occurrence of artefactual bands.
Assuntos
DNA , Ácidos Nucleicos , Sefarose , Eletroforese em Gel de Ágar/métodosRESUMO
By promoting tissue invasion, cell growth and angiogenesis, the Y-box binding protein (YB-1) became famous as multifunctional oncoprotein. However, this designation is telling only part of the story. There is one particular time in life when actual tumorigenic-like processes become undoubtedly welcome, namely pregnancy. It seems therefore reasonable that YB-1 plays also a crucial role in reproduction, and yet this biological aspect of the cold-shock protein has been overlooked for many years. To overcome this limitation, we would like to propose a new perspective on YB-1 and emphasize its pivotal functions in healthy pregnancy and pregnancy-related complications. Moreover, we will discuss findings obtained from cancer research in the light of reproductive events to elucidate the importance of YB-1 at the feto-maternal interface.
RESUMO
Interleukin 17F (IL17F) has been found to be involved in various inflammatory pathologies and has recently become a target for therapeutic purposes. In contrast to IL17F secreted by immune cells, the focus of this study is to describe the triggers of IL17F release in non-immune cells with a particular focus on IL17F-induced fibrosis. IL17F induction was examined in human lung epithelial (BEAS-2B) and myeloid cell lines as well as in peripheral blood mononuclear cells after in vitro exposure to aqueous cigarette smoke extract (CSE), inorganic mercury, cadmium or the apoptosis inducer brefeldin A. Fibrosis was examined in vitro, evaluating the transition of human primary dermal fibroblasts to myofibroblasts. We observed that all stressors were able to induce IL17F gene expression regardless of cell type. Interestingly, its induction was associated with cytotoxic/apoptotic signs. Inhibiting oxidative stress by N-acetylcysteine abrogated CSE-induced cytotoxic and IL17F-inducing effects. The induction of IL17F was accompanied by IL17F protein expression. The transition of fibroblasts into myofibroblasts was not influenced by either recombinant IL17F or supernatants of CSE-exposed BEAS-2B. In addition to IL17F secretion by specialized or activated immune cells, we underscored the cell type-independent induction of IL17F by mechanisms of inhibitable oxidative stress-induced cytotoxicity. However, IL17F was not involved in dermal fibrosis under the conditions used in this study.
Assuntos
Acetilcisteína , Mercúrio , Humanos , Acetilcisteína/farmacologia , Interleucina-17/genética , Leucócitos Mononucleares , Brefeldina A/farmacologia , Cádmio , Apoptose , Estresse Oxidativo , Nicotiana , Fibrose , Mercúrio/farmacologiaRESUMO
Spiral-artery (SA) remodeling is a fundamental process during pregnancy that involves the action of cells of the initial vessel, such as vascular smooth-muscle cells (VSMCs) and endothelial cells, but also maternal immune cells and fetal extravillous trophoblast cells (EVTs). Mast cells (MCs), and specifically chymase-expressing cells, have been identified as key to a sufficient SA-remodeling process in vivo. However, the mechanisms are still unclear. The purpose of this study is to evaluate the effects of the MC line HMC-1 and recombinant human chymase (rhuCMA1) on human primary uterine vascular smooth-muscle cells (HUtSMCs), a human trophoblast cell line (HTR8/SV-neo), and human umbilical-vein endothelial cells (HUVEC) in vitro. Both HMC-1 and rhuCMA1 stimulated migration, proliferation, and changed protein expression in HUtSMCs. HMC-1 increased proliferation, migration, and changed gene expression of HTR8/SVneo cells, while rhuCMA treatment led to increased migration and decreased expression of tissue inhibitors of matrix metalloproteinases. Additionally, rhuCMA1 enhanced endothelial-cell-tube formation. Collectively, we identified possible mechanisms by which MCs/rhuCMA1 promote SA remodeling. Our findings are relevant to the understanding of this crucial step in pregnancy and thus of the dysregulated pathways that can lead to pregnancy complications such as fetal growth restriction and preeclampsia.
Assuntos
Mastócitos , Trofoblastos , Quimases/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Miócitos de Músculo Liso/metabolismo , Fenótipo , Gravidez , Trofoblastos/metabolismoRESUMO
Purpose: In the peripheral blood, it has been shown that smoking is, to date, the only specific condition leading to an increase in GPR15+ T cells. We, therefore, aimed to characterize GPR15-expressing blood T cells in more detail. Materials and Methods: The whole transcriptome by RNAseq as a proxy for protein expression was analyzed in GPR15+ and GPR15- T cells. A deep immuno-phenotyping was conducted for the identification of T cell subtypes. Results: The expression of GPR15 seemed to be unique, not concomitantly accompanied with the expression of another protein. According to different T cell subtypes, there is no single cell type prominently represented in GPR15+ T cells. The individually different proportions of GPR15+ cells among each GPR15-expressing T cell subtypes in blood were strongly associated with chronic smoking. Indeed, the frequency of GPR15+ T cell subtypes can be effectively used as a highly convincing biomarker for tobacco smoking. Conclusions: While the chronic smoking-induced enrichment of GPR15+ T cells in blood might indicate a systemic inflammation, by the widespread presence in different T cell subtypes, GPR15 could feature a general impact on maintaining the systemic homeostasis to putatively prevent harm from smoking.
Assuntos
Inflamação/genética , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Fumar/efeitos adversos , Fumar Tabaco/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Metilação de DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunofenotipagem , Inflamação/induzido quimicamente , Inflamação/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Receptores Acoplados a Proteínas G/sangue , Receptores de Peptídeos/sangue , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Fumar Tabaco/sangue , Fumar Tabaco/patologia , Transcriptoma/genética , Transcriptoma/imunologiaRESUMO
BACKGROUND: Recently, it was shown that chronic tobacco smoking evokes specific cellular and molecular changes in white blood cells by an excess of G protein-coupled receptor 15 (GPR15)-expressing T cells as well as a hypomethylation at DNA CpG site cg05575921 in granulocytes. In the present study, we aimed to clarify the general usefulness of these two biomarkers as putative signs of non-cancerous change in homeostasis of the lungs. METHODS: In a clinical cohort consisting of 42 patients with chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD) and pneumonia and a control cohort of 123 volunteers, the content of GPR15-expressing blood cells as well as the degree of methylation at cg05575921 were analysed by flow-cytometry and pyrosequencing, respectively. Smoking behaviour was estimated by questionnaire and cotinine level in plasma. RESULTS: Never-smoking patients could be distinguished from former and current smokers by both the proportion of GPR15-expressing T cells as well as cg05575921 methylation in granulocytes, with 100% and 97% specificity and 100% sensitivity, respectively. However, both parameters were not affected by lung diseases. The degrees of both parameters were not changed neither in non-smoking nor smoking patients, compared to appropriate control cohorts of volunteers. CONCLUSIONS: The degree of GPR15-expressing cells among T cells as well as the methylation at cg05575921 in granulocytes in blood are both rather signs of tobacco-smoking induced systemic inflammation because they don't indicate specifically non-cancerous pathological changes in the lungs.
Assuntos
Metilação de DNA , Pneumopatias/sangue , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Linfócitos T/metabolismo , Fumar Tabaco/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Ilhas de CpG , Feminino , Granulócitos , Homeostase , Humanos , Doenças Pulmonares Intersticiais/sangue , Lesão Pulmonar/sangue , Masculino , Pessoa de Meia-Idade , Pneumonia/sangue , Doença Pulmonar Obstrutiva Crônica/sangue , Inquéritos e Questionários , Fumar Tabaco/efeitos adversos , Adulto JovemRESUMO
BACKGROUND: Many recent epigenetic studies report that cigarette smoking reduces DNA methylation in whole blood at the single CpG site cg19859270 within the GPR15 gene. RESULTS: Within two independent cohorts, we confirmed the differentially expression of the GPR15 gene when smokers and non-smokers subjects are compared. By validating the GPR15 protein expression at the cellular level, we found that the observed decreased methylation at this site in white blood cells (WBC) of smokers is mainly caused by the high proportion of CD3+GPR15+ expressing T cells in peripheral blood. In current smokers, the percentage of GPR15+ cells among CD3+ T cells in peripheral blood is significantly higher (15.5 ± 7.2 %, mean ± standard deviation) compared to non-smokers (3.7 ± 1.6 %). Treatment of peripheral blood mononuclear cell (PBMC) cultures with aqueous cigarette smoke extract did not induce a higher proportion of this T cell subtype. CONCLUSIONS: Our results underline that DNA hypomethylation at cg19859270 site, observed in WBCs of smokers, did not arise by direct effect of tobacco smoking compounds on methylation of DNA but rather by the enrichment of a tobacco-smoking-induced lymphocyte population in the peripheral blood.
RESUMO
BACKGROUND: Tobacco smoke is worldwide one of the main preventable lifestyle inhalative pollutants causing severe adverse health effects. Epidemiological studies revealed association of tobacco smoking with epigenetic changes at single CpGs in blood. However, the biological relevance of the often only marginal methylation changes remains unclear. RESULTS: Comparing genome-wide changes in CpG methylation of three recently reported epidemiological datasets, two obtained on whole blood and one on peripheral blood mononuclear cells (PBMCs), it becomes evident that the majority of methylation changes (86.7 and 93.3 %) in whole blood account for changes in granulocytes. Analyzing, in more detail, seven highly significant reported smoking-induced methylation changes at single CpGs in different blood cell types of healthy volunteers (n = 32), we confirmatively found a strong cell-type specificity. Two CpGs in GFI1 and F2RL3 were significantly hypomethylated in granulocytes (-11.3 %, p = 0.001; -8.7 %, p = 0.001, respectively) but not in PBMCs of smokers while two CpGs in CPOX and GPR15 were found to be hypomethylated in PBMC (-4.3 %, p = 0.003; -4.2 %, P = 0.009, respectively) and their subtypes of GPR15 non-expressing (-3.2 %, p = 0.027; -2.5 %, p = 0.032, respectively) and smoking-evoked GPR15 expressing T cells (-15.8 %, p < 0.001; -13.8 %, p = 0.018, respectively) but not in granulocytes. In contrast, cg05575921 within AHRR was hypomethylated in every analyzed cell type of smokers, but with a different degree. Both, hypomethylation at cg05575921 in granulocytes (-55.2 % methylation change in smokers, p < 0.001) and the frequency of GPR15+ T cells (9.8-37.1 % in smokers), possessing a specific hypomethylation at cg19859270, were strongly associated with smoking behavior at individual level and could therefore serve as valuable biomarkers indicating a disturbed homeostasis in smokers. In contrast to the reported long-term persistent methylation changes in adult smokers after cessation, the hypomethylation at cg05575921 in prenatally tobacco smoke-exposed children (n = 13) from our LINA cohort was less stable and disappeared already within 2 years after birth. CONCLUSIONS: Studying cell type-specific methylation changes provides helpful information regarding the biological relevance of epigenetic modifications. Here, we could show that smoking differently affects both cells of the innate and adaptive immune systems.