Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(17): 176604, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955483

RESUMO

We perform a systematic study of Andreev conversion at the interface between a superconductor and graphene in the quantum Hall (QH) regime. We find that the probability of Andreev conversion from electrons to holes follows an unexpected but clear trend: the dependencies on temperature and magnetic field are nearly decoupled. We discuss these trends and the role of the superconducting vortices, whose normal cores could both absorb and dephase the individual electrons in a QH edge. Our Letter may pave the road to engineering a future generation of hybrid devices for exploiting superconductivity proximity in chiral channels.

2.
Nano Lett ; 23(11): 5257-5263, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37191404

RESUMO

Superconducting diodes are proposed nonreciprocal circuit elements that should exhibit nondissipative transport in one direction while being resistive in the opposite direction. Multiple examples of such devices have emerged in the past couple of years; however, their efficiency is typically limited, and most of them require a magnetic field to function. Here we present a device that achieves efficiencies approaching 100% while operating at zero field. Our samples consist of a network of three graphene Josephson junctions linked by a common superconducting island, to which we refer as a Josephson triode. The three-terminal nature of the device inherently breaks the inversion symmetry, and the control current applied to one of the contacts breaks the time-reversal symmetry. The triode's utility is demonstrated by rectifying a small (nA scale amplitude) applied square wave. We speculate that devices of this type could be realistically employed in the modern quantum circuits.

3.
Sci Adv ; 9(7): eadf1414, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791191

RESUMO

A two-dimensional, anisotropic superconductivity was recently found at the KTaO3(111) interfaces. The nature of the anisotropic superconducting transition remains a subject of debate. To investigate the origins of the observed behavior, we grew epitaxial KTaO3(111)-based heterostructures. We show that the superconductivity is robust against the in-plane magnetic field and violates the Pauli limit. We also show that the Cooper pairs are more resilient when the bias is along [11[Formula: see text]] (I ∥ [11[Formula: see text]]) and the magnetic field is along [1[Formula: see text]0] (B ∥ [1[Formula: see text]0]). We discuss the anisotropic nature of superconductivity in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. The results point to future opportunities to enhance superconducting transition temperatures and critical fields in crystalline, two-dimensional superconductors with strong spin-orbit coupling.

4.
Nano Lett ; 22(23): 9645-9651, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36441587

RESUMO

The vanishing band gap of graphene has long presented challenges for making high-quality quantum point contacts (QPCs)─the partially transparent p-n interfaces introduced by conventional split gates tend to short circuit the QPCs. This complication has hindered the fabrication of graphene quantum Hall Fabry-Pérot interferometers, until recent advances have allowed split-gate QPCs to operate utilizing the highly resistive ν = 0 state. Here, we present a simple recipe to fabricate QPCs by etching a narrow trench in the graphene sheet to separate the conducting channel from self-aligned graphene side gates. We demonstrate operation of the individual QPCs in the quantum Hall regime and further utilize these QPCs to create and study a quantum Hall interferometer.


Assuntos
Grafite
5.
Nano Lett ; 22(17): 7073-7079, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-35997531

RESUMO

The dynamical properties of multiterminal Josephson junctions (MT-JJs) have attracted interest, driven by the promise of new insights into synthetic topological phases of matter and Floquet states. This effort has culminated in the discovery of Cooper multiplets in which the splitting of a Cooper pair is enabled via a series of Andreev reflections that entangle four (or more) electrons. Here, we show that multiplet resonances can also emerge as a consequence of the three-terminal circuit model. The supercurrent appears due to correlated phase dynamics at values that correspond to the multiplet condition nV1 = -mV2 of applied bias. Multiplet resonances are seen in nanofabricated three-terminal graphene JJs, analog three-terminal JJ circuits, and circuit simulations. The stabilization of the supercurrent is purely dynamical, and a close analog to Kapitza's inverted pendulum problem. We describe parameter considerations that optimize the detection of the multiplet lines both for design of future devices.


Assuntos
Elétrons , Vibração
6.
Nano Lett ; 21(22): 9668-9674, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34779633

RESUMO

When a Josephson junction is exposed to microwave radiation, it undergoes the inverse AC Josephson effect─the phase of the junction locks to the drive frequency. As a result, the I-V curves of the junction acquire "Shapiro steps" of quantized voltage. If the junction has three or more superconducting contacts, coupling between different pairs of terminals must be taken into account and the state of the junction evolves in a phase space of higher dimensionality. Here, we study the multiterminal inverse AC Josephson effect in a graphene sample with three superconducting terminals. We observe robust fractional Shapiro steps and correlated switching events, which can only be explained by considering the device as a completely connected Josephson network. We successfully simulate the observed behaviors using a modified two-dimensional RCSJ model. Our results suggest that multiterminal Josephson junctions are a playground to study highly connected nonlinear networks with novel topologies.

7.
Nano Lett ; 20(10): 6998-7003, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32902995

RESUMO

The AC Josephson effect manifests itself in the form of "Shapiro steps" of quantized voltage in Josephson junctions subject to radiofrequency (RF) radiation. This effect presents an early example of a driven-dissipative quantum phenomenon and is presently utilized in primary voltage standards. Shapiro steps have also become one of the standard tools to probe junctions made in a variety of novel materials. Here we study Shapiro steps in a widely tunable graphene-based Josephson junction in which the high-frequency dynamics is determined by the on-chip environment. We investigate the variety of patterns that can be obtained in this well-understood system depending on the carrier density, temperature, RF frequency, and magnetic field. Although the patterns of Shapiro steps can change drastically when just one parameter is varied, the overall trends can be understood and the behaviors straightforwardly simulated, showing some key differences from the conventional RCSJ model. The resulting understanding may help interpret similar measurements in more complex materials.

8.
Sci Adv ; 5(9): eaaw8693, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31548985

RESUMO

We present a study of a graphene-based Josephson junction with dedicated side gates carved from the same sheet of graphene as the junction itself. These side gates are highly efficient and allow us to modulate carrier density along either edge of the junction in a wide range. In particular, in magnetic fields in the 1- to 2-T range, we are able to populate the next Landau level, resulting in Hall plateaus with conductance that differs from the bulk filling factor. When counter-propagating quantum Hall edge states are introduced along either edge, we observe a supercurrent localized along that edge of the junction. Here, we study these supercurrents as a function of magnetic field and carrier density.

9.
Nano Lett ; 19(2): 1039-1043, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30620606

RESUMO

We investigate the electronic properties of ballistic planar Josephson junctions with multiple superconducting terminals. Our devices consist of monolayer graphene encapsulated in boron nitride with molybdenum-rhenium contacts. Resistance measurements yield multiple resonant features, which are attributed to supercurrent flow among adjacent and nonadjacent Josephson junctions. In particular, we find that superconducting and dissipative currents coexist within the same region of graphene. We show that the presence of dissipative currents primarily results in electron heating and estimate the associated temperature rise. We find that the electrons in encapsulated graphene are efficiently cooled through the electron-phonon coupling.

10.
Nano Lett ; 16(8): 4788-91, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388297

RESUMO

We present transport measurements on long, diffusive, graphene-based Josephson junctions. Several junctions are made on a single-domain crystal of CVD graphene and feature the same contact width of ∼9 µm but vary in length from 400 to 1000 nm. As the carrier density is tuned with the gate voltage, the critical current in these junctions ranges from a few nanoamperes up to more than 5 µA, while the Thouless energy, ETh, covers almost 2 orders of magnitude. Over much of this range, the product of the critical current and the normal resistance ICRN is found to scale linearly with ETh, as expected from theory. However, the value of the ratio ICRN/ETh is found to be 0.1-0.2, which much smaller than the predicted ∼10 for long diffusive SNS junctions.

11.
Nano Lett ; 15(2): 1095-100, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25602159

RESUMO

The nonoxidizing catalytic noble metal rhodium is introduced for ultraviolet plasmonics. Planar tripods of 8 nm Rh nanoparticles, synthesized by a modified polyol reduction method, have a calculated local surface plasmon resonance near 330 nm. By attaching p-aminothiophenol, local field-enhanced Raman spectra and accelerated photodamage were observed under near-resonant ultraviolet illumination, while charge transfer simultaneously increased fluorescence for up to 13 min. The combined local field enhancement and charge transfer demonstrate essential steps toward plasmonically enhanced ultraviolet photocatalysis.

12.
ACS Nano ; 8(8): 8564-72, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25111952

RESUMO

The coexistence of semiconducting and metallic single-walled carbon nanotubes (SWNTs) during synthesis is one of the major bottlenecks that prevent their broad application for the next-generation nanoelectronics. Herein, we present more understanding and demonstration of the growth of highly enriched semiconducting SWNTs (s-SWNTs) with a narrow diameter distribution. An important fact discovered in our experiments is that the selective elimination of metallic SWNTs (m-SWNTs) from the mixed arrays grown on quartz is diameter-dependent. Our method emphasizes controlling the diameter distribution of SWNTs in a narrow range where m-SWNTs can be effectively and selectively etched during growth. In order to achieve narrow diameter distribution, uniform and stable Fe-W nanoclusters were used as the catalyst precursors. About 90% of as-prepared SWNTs fall into the diameter range 2.0-3.2 nm. Electrical measurement results on individual SWNTs confirm that the selectivity of s-SWNTs is ∼95%. The present study provides an effective strategy for increasing the purity of s-SWNTs via controlling the diameter distribution of SWNTs and adjusting the etchant concentration. Furthermore, by carefully comparing the chirality distributions of Fe-W-catalyzed and Fe-catalyzed SWNTs under different water vapor concentrations, the relationship between the diameter-dependent and electronic-type-dependent etching mechanisms was investigated.

13.
PLoS One ; 8(6): e65715, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840357

RESUMO

The computational complexity of the brain depends in part on a neuron's capacity to integrate electrochemical information from vast numbers of synaptic inputs. The measurements of synaptic activity that are crucial for mechanistic understanding of brain function are also challenging, because they require intracellular recording methods to detect and resolve millivolt- scale synaptic potentials. Although glass electrodes are widely used for intracellular recordings, novel electrodes with superior mechanical and electrical properties are desirable, because they could extend intracellular recording methods to challenging environments, including long term recordings in freely behaving animals. Carbon nanotubes (CNTs) can theoretically deliver this advance, but the difficulty of assembling CNTs has limited their application to a coating layer or assembly on a planar substrate, resulting in electrodes that are more suitable for in vivo extracellular recording or extracellular recording from isolated cells. Here we show that a novel, yet remarkably simple, millimeter-long electrode with a sub-micron tip, fabricated from self-entangled pure CNTs can be used to obtain intracellular and extracellular recordings from vertebrate neurons in vitro and in vivo. This fabrication technology provides a new method for assembling intracellular electrodes from CNTs, affording a promising opportunity to harness nanotechnology for neuroscience applications.


Assuntos
Nanotecnologia/instrumentação , Neurônios/fisiologia , Sinapses/fisiologia , Vertebrados/fisiologia , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Microeletrodos , Nanotubos de Carbono
14.
Nature ; 488(7409): 61-4, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859201

RESUMO

A Luttinger liquid is an interacting one-dimensional electronic system, quite distinct from the 'conventional' Fermi liquids formed by interacting electrons in two and three dimensions. Some of the most striking properties of Luttinger liquids are revealed in the process of electron tunnelling. For example, as a function of the applied bias voltage or temperature, the tunnelling current exhibits a non-trivial power-law suppression. (There is no such suppression in a conventional Fermi liquid.) Here, using a carbon nanotube connected to resistive leads, we create a system that emulates tunnelling in a Luttinger liquid, by controlling the interaction of the tunnelling electron with its environment. We further replace a single tunnelling barrier with a double-barrier, resonant-level structure and investigate resonant tunnelling between Luttinger liquids. At low temperatures, we observe perfect transparency of the resonant level embedded in the interacting environment, and the width of the resonance tends to zero. We argue that this behaviour results from many-body physics of interacting electrons, and signals the presence of a quantum phase transition. Given that many parameters, including the interaction strength, can be precisely controlled in our samples, this is an attractive model system for studying quantum critical phenomena in general, with wide-reaching implications for understanding quantum phase transitions in more complex systems, such as cold atoms and strongly correlated bulk materials.

15.
Phys Rev Lett ; 107(13): 137004, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026893

RESUMO

An aluminum nanowire switches from superconducting to normal as the current is increased in an upsweep. The switching current (I(s)) averaged over upsweeps approximately follows the depairing critical current (I(c)) but falls below it. Fluctuations in I(s) exhibit three distinct regions of behaviors and are nonmonotonic in temperature: saturation well below the critical temperature T(c), an increase as T(2/3) at intermediate temperatures, and a rapid decrease close to T(c). Heat dissipation analysis indicates that a single phase slip is able to trigger switching at low and intermediate temperatures, whereby the T(2/3) dependence arises from the thermal activation of a phase slip, while saturation at low temperatures provides striking evidence that the phase slips by macroscopic quantum tunneling.

16.
Phys Rev Lett ; 100(8): 086809, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18352655

RESUMO

We present numerical renormalization group calculations for the zero-bias conductance of quantum dots made from semiconducting carbon nanotubes. These explain and reproduce the thermal evolution of the conductance for different groups of orbitals, as the dot-lead tunnel coupling is varied and the system evolves from correlated Kondo behavior to more weakly correlated regimes. For integer fillings N=1, 2, 3 of an SU(4) model, we find universal scaling behavior of the conductance that is distinct from the standard SU(2) universal conductance, and concurs quantitatively with experiment. Our results also agree qualitatively with experimental differential conductance maps.

17.
J Am Chem Soc ; 130(1): 40-1, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18072780

RESUMO

The simple helical motif of double-strand DNA (dsDNA) has typically been judged to be uninteresting for assembly in DNA-based nanotechnology applications. In this letter, we demonstrate construction of superstructures consisting of heterogeneous DNA motifs using dsDNA in conjunction with more complex, cross-tile building blocks. Incorporation of dsDNA bridges in stepwise assembly processes can be used for controlling length and directionality of superstructures and is analogous to the "reprogramming" of sticky-ends displayed on the DNA tiles. Two distinct self-assembled DNA lattices, fixed-size nanoarrays, and extended 2D crystals of nanotracks with nanobridges, are constructed and visualized by high-resolution, liquid-phase atomic force microscopy.


Assuntos
DNA/química , Nanotecnologia/métodos , Cristalização , Microscopia de Força Atômica , Nanoestruturas , Conformação de Ácido Nucleico
18.
Nano Lett ; 5(4): 693-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15826110

RESUMO

We present a DNA nanostructure, the three-helix bundle (3HB), which consists of three double helical DNA domains connected by six immobile crossover junctions such that the helix axes are not coplanar. The 3HB motif presents a triangular cross-section with one helix lying in the groove formed by the other two. By differential programming of sticky-ends, 3HB tiles can be arrayed in two distinct lattice conformations: one-dimensional filaments and two-dimensional lattices. Filaments and lattices have been visualized by high-resolution, tapping mode atomic force microscopy (AFM) under buffer. Their dimensions are shown to be in excellent agreement with designed structures. We also demonstrate an electroless chemical deposition for fabricating metallic nanowires templated on self-assembled filaments. The metallized nanowires have diameters down to 20 nm and display Ohmic current-voltage characteristic.


Assuntos
DNA/química , DNA/ultraestrutura , Nanoestruturas/química , Prata/química , Microscopia de Força Atômica , Conformação de Ácido Nucleico
19.
Science ; 301(5641): 1882-4, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-14512621

RESUMO

A DNA nanostructure consisting of four four-arm junctions oriented with a square aspect ratio was designed and constructed. Programmable self-assembly of 4 x 4 tiles resulted in two distinct lattice morphologies: uniform-width nanoribbons and two-dimensional nanogrids, which both display periodic square cavities. Periodic protein arrays were achieved by templated self-assembly of streptavidin onto the DNA nanogrids containing biotinylated oligonucleotides. On the basis of a two-step metallization procedure, the 4 x 4 nanoribbons acted as an excellent scaffold for the production of highly conductive, uniform-width, silver nanowires.


Assuntos
DNA , Nanotecnologia , Análise Serial de Proteínas , Prata , Estreptavidina , Biotinilação , DNA/química , Condutividade Elétrica , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA