Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682874

RESUMO

To decipher the mediator role of the grape Abscisic acid, Stress, Ripening (ASR) protein, VvMSA, in the pathways of glucose signaling through the regulation of its target, the promoter of hexose transporter VvHT1, we overexpressed and repressed VvMSA in embryogenic and non-embryogenic grapevine cells. The embryogenic cells with organized cell proliferation were chosen as an appropriate model for high sensitivity to the glucose signal, due to their very low intracellular glucose content and low glycolysis flux. In contrast, the non-embryogenic cells displaying anarchic cell proliferation, supported by high glycolysis flux and a partial switch to fermentation, appeared particularly sensitive to inhibitors of glucose metabolism. By using different glucose analogs to discriminate between distinct pathways of glucose signal transduction, we revealed VvMSA positioning as a transcriptional regulator of the glucose transporter gene VvHT1 in glycolysis-dependent glucose signaling. The effects of both the overexpression and repression of VvMSA on glucose transport and metabolism via glycolysis were analyzed, and the results demonstrated its role as a mediator in the interplay of glucose metabolism, transport and signaling. The overexpression of VvMSA in the Arabidopsis mutant abi8 provided evidence for its partial functional complementation by improving glucose absorption activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Vitis , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Vitis/metabolismo
2.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628355

RESUMO

Abscisic acid (ABA) and gibberellic acid (GA) antagonistically regulate many aspects of plant growth, including seed dormancy and germination. The effects of these hormones are mediated by a complex network of positive and negative regulators of transcription. The DELLA family of proteins repress GA response, and can promote an ABA response via interactions with numerous regulators, including the ABA-insensitive (ABI) transcription factors. The AFP family of ABI5 binding proteins are repressors of the ABA response. This study tested the hypothesis that the AFPs also interact antagonistically with DELLA proteins. Members of these protein families interacted weakly in yeast two-hybrid and bimolecular fluorescence complementation studies. Overexpression of AFPs in sleepy1, a mutant that over-accumulates DELLA proteins, suppressed DELLA-induced overaccumulation of storage proteins, hyperdormancy and hypersensitivity to ABA, but did not alter the dwarf phenotype of the mutant. The interaction appeared to reflect additive effects of the AFPs and DELLAs, consistent with action in convergent pathways.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
3.
Plant Physiol ; 189(2): 666-678, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258597

RESUMO

Overexpression of ABA-INSENSITIVE5 binding proteins (AFPs) results in extreme ABA resistance of seeds and failure to acquire desiccation tolerance, at least in part through effects on chromatin modification. We tested the hypothesis that AFPs promote germination in Arabidopsis (Arabidopsis thaliana) by also functioning as adapters for E3 ligases that ubiquitinate ABI5, leading to its degradation. Interactions between AFPs and two well-characterized classes of E3 ligases targeting ABI5, DWD HYPERSENSITIVE TO ABA (DWA)s and KEEP ON GOING, were analyzed by yeast two-hybrid, bimolecular fluorescence complementation, and genetic assays. Although weak direct interactions were detected between AFPs and E3 ligases, loss of function for these E3 ligases did not impair ABA-resistance conferred by overexpression of the YFP-AFP2 fusion. Comparison of ABI5 and AFP2 levels in these lines showed that AFP2 accumulation increased during germination, but that ABI5 degradation followed germination, demonstrating that AFP2 overexpression reduces ABA sensitivity, thereby permitting germination prior to ABI5 degradation. Surprisingly, AFP2 overexpression in the dwa1 dwa2 mutant background produced the unusual combination of extreme ABA resistance and desiccation tolerance, creating an opportunity to separate the underlying biochemical characteristics of ABA sensitivity and desiccation tolerance. Our quantitative proteomics analysis identified at least three-fold more differentially accumulated seed proteins than previous studies. Comparison of dry seed proteomes of wild-type or dwa1 dwa2 mutants with or without AFP2 overexpression allowed us to separate and refine the changes in protein accumulation patterns associated with desiccation tolerance independently of ABA sensitivity, or vice versa, to a subset of cold-induced and defense stress-responsive proteins and signaling regulators.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Sementes/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Plant Mol Biol ; 102(6): 571-588, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31927659

RESUMO

KEY MESSAGE: A family of repetitive proline-rich proteins interact with acidic pectins and play distinct roles in legume root cell walls affecting cortical and vascular structure. A proline-rich protein (PRP) family, composed of tandemly repeated Pro-Hyp-Val-X-Lys pentapeptide motifs, is found primarily in the Leguminosae. Four distinct size classes within this family are encoded by seven tightly linked genes: MtPRP1, MtPRP2 and MtPRP3, and four nearly identical MtPRP4 genes. Promoter fusions to ß-glucuronidase showed strong expression in the stele of hairy roots for all 4 PRP genes tested, with additional expression in the cortex for PRP1, PRP2 and PRP4. All except MtPRP4 are strongly expressed in non-tumorous roots, and secreted and ionically bound to root cell walls. These PRPs are absent from root epidermal cell walls, and PRP accumulation is highly localized within the walls of root cortical and vascular tissues. Within xylem tissue, PRPs are deposited in secondary thickenings where it is spatially exclusive to lignin. In newly differentiating xylem, PRPs are deposited in the regularly spaced paired-pits and pit membranes that hydraulically connect neighboring xylem elements. Hairpin-RNA knock-down constructs reducing PRP expression in Medicago truncatula hairy root tumors disrupted cortical and vascular patterning. Immunoblots showed that the knockdown tumors had potentially compensating increases in the non-targeted PRPs, all of which cross-react with the anti-PRP antibodies. However, PRP3 knockdown differed from knockdown of PRP1 and PRP2 in that it greatly reduced viability of hairy root tumors. We hypothesize that repetitive PRPs interact with acidic pectins to form block-copolymer gels that can play distinct roles in legume root cell walls.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Domínios Proteicos Ricos em Prolina/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Vetores Genéticos , Glucuronidase , Medicago truncatula/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Salivares Ricas em Prolina , Xilema/metabolismo
5.
Plant Mol Biol ; 93(4-5): 403-418, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27942958

RESUMO

KEY MESSAGE: Overexpression of ABI5/ABF binding proteins (AFPs) results in extreme ABA resistance of seeds via multiple mechanisms repressing ABA response, including interactions with histone deacetylases and the co-repressor TOPLESS. Several ABI5/ABF binding proteins (AFPs) inhibit ABA response, resulting in extreme ABA resistance in transgenic Arabidopsis overexpression lines, but their mechanism of action has remained obscure. By analogy to the related Novel Interactor of JAZ (NINJA) protein, it was suggested that the AFPs interact with the co-repressor TOPLESS to inhibit ABA-regulated gene expression. This study shows that the AFPs that inhibit ABA response have intrinsic repressor activity in a heterologous system, which does not depend on the domain involved in the interaction with TOPLESS. This domain is also not essential for repressing ABA response in transgenic plants, but does contribute to stronger ABA resistance. Additional interactions between some AFPs and histone deacetylase subunits were observed in yeast two-hybrid and bimolecular fluorescence assays, consistent with a more direct mechanism of AFP-mediated repression of gene expression. Chemical inhibition of histone deacetylase activity by trichostatin A suppressed AFP effects on a small fraction of the ABI5-regulated genes tested. Collectively, these results suggest that the AFPs participate in multiple mechanisms modulating ABA response, including both TOPLESS-dependent and -independent chromatin modification.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Cromatina/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia de Fluorescência , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
6.
Plant Mol Biol ; 80(6): 647-58, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23007729

RESUMO

Abscisic acid (ABA) signaling via the pyrabactin-resistant and related (PYR/PYL/RCAR) receptors begins with ABA-dependent inactivation of the ABA-insensitive(ABI)-clade protein phosphatases(PP)2Cs, thereby permitting phosphorylation and activation of the Snf1-related (SnRK)2 clade of protein kinases, and activation of their downstream targets such as ABA-response element binding basic leucine zipper (bZIP) transcription factors (ABF/AREB/ABI5 clade). Several of these are also activated by calcium-dependent protein kinases such as CPK11. Turning off ABA response requires turnover and/or inactivation of these transcription factors, which could result from their dephosphorylation. To address the hypothesis that the ABI-clade PP2Cs regulate the bZIPs directly, in addition to their indirect effects via SnRKs, we have assayed interactions between multiple members of the ABF/AREB clade and the PP2Cs by yeast two-hybrid, in vitro phosphatase, and bimolecular fluorescence complementation assays. In addition, we have expanded the list of documented specific interactions among these bZIP proteins and the kinases that could activate them and found that some PP2Cs can also interact directly with CPK11. These studies support specific interactions among kinases, phosphatases and transcription factors that are co-expressed in early seedling development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fosfoproteínas Fosfatases/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 2C , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
Plant Mol Biol ; 75(4-5): 347-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21243515

RESUMO

The plant hormone abscisic acid (ABA) is a key regulator of seed development. In addition to promoting seed maturation, ABA inhibits seed germination and seedling growth. Many components involved in ABA response have been identified, including the transcription factors ABA insensitive (ABI)4 and ABI5. The genes encoding these factors are expressed predominantly in developing and mature seeds, and are positive regulators of ABA mediated inhibition of seed germination and growth. The direct effects of ABI4 and ABI5 in ABA response remain largely undefined. To address this question, plants over-expressing ABI4 or ABI5 were used to allow identification of direct transcriptional targets. Ectopically expressed ABI4 and ABI5 conferred ABA-dependent induction of slightly over 100 genes in 11 day old plants. In addition to effector genes involved in seed maturation and reserve storage, several signaling proteins and transcription factors were identified as targets of ABI4 and/or ABI5. Although only 12% of the ABA- and ABI-dependent transcriptional targets were induced by both ABI factors in 11 day old plants, 40% of those normally expressed in seeds had reduced transcript levels in both abi4 and abi5 mutants. Surprisingly, many of the ABI4 transcriptional targets do not contain the previously characterized ABI4 binding motifs, the CE1 or S box, in their promoters, but some of these interact with ABI4 in electrophoretic mobility shift assays, suggesting that sequence recognition by ABI4 may be more flexible than known canonical sequences. Yeast one-hybrid assays demonstrated synergistic action of ABI4 with ABI5 or related bZIP factors in regulating these promoters, and mutant analyses showed that ABI4 and these bZIPs share some functions in plants.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação/genética , Primers do DNA/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
8.
Annu Rev Plant Biol ; 61: 651-79, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20192755

RESUMO

Abscisic acid (ABA) regulates numerous developmental processes and adaptive stress responses in plants. Many ABA signaling components have been identified, but their interconnections and a consensus on the structure of the ABA signaling network have eluded researchers. Recently, several advances have led to the identification of ABA receptors and their three-dimensional structures, and an understanding of how key regulatory phosphatase and kinase activities are controlled by ABA. A new model for ABA action has been proposed and validated, in which the soluble PYR/PYL/RCAR receptors function at the apex of a negative regulatory pathway to directly regulate PP2C phosphatases, which in turn directly regulate SnRK2 kinases. This model unifies many previously defined signaling components and highlights the importance of future work focused on defining the direct targets of SnRK2s and PP2Cs, dissecting the mechanisms of hormone interactions (i.e., cross talk) and defining connections between this new negative regulatory pathway and other factors implicated in ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
10.
Plant Cell ; 16(2): 406-21, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14742875

RESUMO

Abscisic acid (ABA) regulates many aspects of plant growth and development, yet many ABA response mutants present only subtle phenotypic defects, especially in the absence of stress. By contrast, the ABA-insensitive8 (abi8) mutant, isolated on the basis of ABA-resistant germination, also displays severely stunted growth, defective stomatal regulation, altered ABA-responsive gene expression, delayed flowering, and male sterility. The stunted growth of the mutant is not rescued by gibberellin, brassinosteroid, or indoleacetic acid application and is not attributable to excessive ethylene response, but supplementing the medium with Glc improves viability and root growth. In addition to exhibiting Glc-dependent growth, reflecting decreased expression of sugar-mobilizing enzymes, abi8 mutants are resistant to Glc levels that induce developmental arrest of wild-type seedlings. Studies of genetic interactions demonstrate that ABA hypersensitivity conferred by the ABA-hypersensitive1 mutation or overexpression of ABI3 or ABI5 does not suppress the dwarfing and Glc dependence caused by abi8 but partially suppresses ABA-resistant germination. By contrast, the ABA-resistant germination of abi8 is epistatic to the hypersensitivity caused by ethylene-insensitive2 (ein2) and ein3 mutations, yet ABI8 appears to act in a distinct Glc response pathway from these EIN loci. ABI8 encodes a protein with no domains of known function but belongs to a small plant-specific protein family. Database searches indicate that it is allelic to two dwarf mutants, elongation defective1 and kobito1, previously shown to disrupt cell elongation, cellulose synthesis, vascular differentiation, and root meristem maintenance. The cell wall defects appear to be a secondary effect of the mutations because Glc treatment restores root growth and vascular differentiation but not cell elongation. Although the ABI8 transcript accumulates in all tested plant organs in both wild-type and ABA response mutants, an ABI8-beta-glucuronidase fusion protein is localized primarily to the elongation zone of roots, suggesting substantial post-transcriptional regulation of ABI8 accumulation. This localization pattern is sufficient to complement the mutation, indicating that ABI8 acts either at very low concentrations or over long distances within the plant body.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Carboidratos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Ligação a DNA , Fertilidade/fisiologia , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Plant Physiol ; 133(1): 231-42, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12970489

RESUMO

Mutant characterization has demonstrated that ABI4 (Abscisic Acid [ABA] Insensitive 4), ABI5 (ABA Insensitive 5), and CTR1 (Constitutive Triple Response 1) genes play an important role in the sugar signaling response in plants. The present study shows that the transcripts of these three genes are modulated by glucose (Glc) independently of the developmental arrest caused by high Glc concentrations. ABI4 and ABI5 transcripts accumulate in response to sugars, whereas the CTR1 transcript is transiently reduced followed by a rapid recovery. The results of our kinetic studies on gene expression indicate that ABI4, ABI5, and CTR1 are regulated by multiple signals including Glc, osmotic stress, and ABA. However, the differential expression profiles caused by these treatments suggest that distinct signaling pathways are used for each signal. ABI4 and ABI5 response to the Glc analog 2-deoxy-Glc supports this conclusion. Glc regulation of ABI4 and CTR1 transcripts is dependent on the developmental stage. Finally, the Glc-mediated regulation of ABI4 and ABI5 is affected in mutants displaying Glc-insensitive phenotypes such as gins, abas, abi4, abi5, and ctr1 but not in abi1-1, abi2-1, and abi3-1, which do not show a Glc-insensitive phenotype. The capacity of transcription factors, like the ones analyzed in this work, to be regulated by a variety of signals might contribute to the ability of plants to respond in a flexible and integral way to continuous changes in the internal and external environment.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glucose/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Pressão Osmótica/efeitos dos fármacos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Plant Physiol ; 131(1): 78-92, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12529517

RESUMO

Progression through embryogenesis and the transition to germination is subject to regulation by many transcription factors, including those encoded by the Arabidopsis LEC1 (LEAFY COTYLEDON1), FUS3 (FUSCA3), and abscisic acid-insensitive (ABI) ABI3, ABI4, and ABI5 loci. To determine whether the ABI4, ABI5, LEC1, and FUS3 loci interact or act independently, we analyzed abi fus3 and abi lec1 double mutants. Our results show that both ABI4 and ABI5 interact genetically with both LEC1 and FUS3 in controlling pigment accumulation, suppression of vivipary, germination sensitivity to abscisic acid, gene expression during mid- and late embryogenesis, sugar metabolism, sensitivity to sugar, and etiolated growth. However, the relative strengths of the observed interactions vary among responses and may even be antagonistic. Furthermore, the interactions reveal cryptic effects of individual loci that are not detectable by analyses of single mutants. Despite these strong genetic interactions, but consistent with the disparities in peak expression of these loci, none of the ABI transcription factors appear to interact directly with either FUS3 or LEC1 in a yeast (Saccharomyces cerevisiae) two-hybrid assay system.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Carboidratos/farmacologia , Sementes/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Metabolismo dos Carboidratos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Germinação/efeitos dos fármacos , Germinação/fisiologia , Germinação/efeitos da radiação , Luz , Mutação , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sementes/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Plant Physiol ; 129(4): 1533-43, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12177466

RESUMO

Abscisic acid (ABA) and stress response from late embryonic growth through early seedling development is regulated by a signaling network that includes the Arabidopsis ABA-insensitive (ABI)5 gene, which encodes a basic leucine zipper transcription factor. We have characterized genetic, developmental, and environmental regulation of ABI5 expression. Although expressed most strongly in seeds, the ABI5 promoter is also active in vegetative and floral tissue. Vegetative expression is strongly induced by ABA, and weakly by stress treatments during a limited developmental window up to approximately 2 d post-stratification, but ABA and some stresses can induce expression in specific tissues at later stages. ABI5 expression is autoregulated in transgenic plants and yeast (Saccharomyces cerevisiae), and stress response appears to involve ABI5-dependent and -independent mechanisms. To determine whether ABI5 is necessary and/or sufficient for ABA or stress response, we assayed the effects of increased ABI5 expression on growth and gene expression. Although overexpression of ABI5 confers hypersensitivity to ABA and sugar, as previously described for ABI4 and ABI3 overexpression lines, it has relatively limited effects on enhancing ABA-responsive gene expression. Comparison of expression of eight ABI5-homologous genes shows overlapping regulation by ABI3, ABI4, and ABI5, suggestive of a combinatorial network involving positive and negative regulatory interactions.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis , Arabidopsis/genética , Carboidratos/farmacologia , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Fatores de Transcrição de Zíper de Leucina Básica , Meio Ambiente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Zíper de Leucina/genética , Zíper de Leucina/fisiologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/fisiologia , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Transdução de Sinais/efeitos dos fármacos , Estresse Mecânico , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , beta-Galactosidase/metabolismo
15.
Curr Opin Plant Biol ; 5(1): 26-32, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11788304

RESUMO

Plant growth and development are controlled by the concerted action of many signaling pathways that integrate information from environmental signals with that from developmental and metabolic cues. Physiological studies have demonstrated that abscisic acid and sugars have both similar and antagonistic effects on diverse processes, including seed development, germination, and seedling growth. Recent genetic studies have identified several loci that are involved in both sugar and hormonal responses. It is rarely clear whether these apparent linkages reflect direct or indirect interactions between sugar and hormone signaling pathways, but the identification of gene products that are encoded at these loci is allowing these possibilities to be tested.


Assuntos
Ácido Abscísico/metabolismo , Glucose/metabolismo , Desenvolvimento Vegetal , Sacarose/metabolismo , Germinação , Mutação , Plantas/genética , Receptor Cross-Talk/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais
16.
Arabidopsis Book ; 1: e0058, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-22303212
17.
J Biol Chem ; 277(3): 1689-94, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11704678

RESUMO

Abscisic acid (ABA) regulates seed maturation, germination, and adaptation of vegetative tissues to environmental stresses. The mechanisms of ABA action and the specificity conferred by signaling components in overlapping pathways are not completely understood. The ABI5 gene (ABA insensitive 5) of Arabidopsis encodes a basic leucine zipper factor required for ABA response in the seed and vegetative tissues. Using transient gene expression in rice protoplasts, we provide evidence for the functional interactions of ABI5 with ABA signaling effectors VP1 (viviparous 1) and ABI1 (ABA insensitive 1). Co-transformation experiments with ABI5 cDNA constructs resulted in specific transactivation of the ABA-inducible wheat Em, Arabidopsis AtEm6, bean beta-Phaseolin, and barley HVA1 and HVA22 promoters. Furthermore, ABI5 interacted synergistically with ABA and co-expressed VP1, indicating that ABI5 is involved in ABA-regulated transcription mediated by VP1. ABI5-mediated transactivation was inhibited by overexpression of abi1-1, the dominant-negative allele of the protein phosphatase ABI1, and by 1-butanol, a competitive inhibitor of phospholipase D involved in ABA signaling. Lanthanum, a trivalent ion that acts as an agonist of ABA signaling, potentiated ABI5 transactivation. These results demonstrate that ABI5 is a key target of a conserved ABA signaling pathway in plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Protoplastos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Oryza/ultraestrutura , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA