Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35889115

RESUMO

Cronobacter sakazakii continues to be isolated from ready-to-eat fresh and frozen produce, flours, dairy powders, cereals, nuts, and spices, in addition to the conventional sources of powdered infant formulae (PIF) and PIF production environments. To understand the sequence diversity, phylogenetic relationship, and virulence of C. sakazakii originating from plant-origin foods, comparative molecular and genomic analyses, and zebrafish infection (ZI) studies were applied to 88 strains. Whole genome sequences of the strains were generated for detailed bioinformatic analysis. PCR analysis showed that all strains possessed a pESA3-like virulence plasmid similar to reference C. sakazakii clinical strain BAA-894. Core genome analysis confirmed a shared genomic backbone with other C. sakazakii strains from food, clinical and environmental strains. Emerging nucleotide diversity in these plant-origin strains was highlighted using single nucleotide polymorphic alleles in 2000 core genes. DNA hybridization analyses using a pan-genomic microarray showed that these strains clustered according to sequence types (STs) identified by multi-locus sequence typing (MLST). PHASTER analysis identified 185 intact prophage gene clusters encompassing 22 different prophages, including three intact Cronobacter prophages: ENT47670, ENT39118, and phiES15. AMRFinderPlus analysis identified the CSA family class C ß-lactamase gene in all strains and a plasmid-borne mcr-9.1 gene was identified in three strains. ZI studies showed that some plant-origin C. sakazakii display virulence comparable to clinical strains. Finding virulent plant-origin C. sakazakii possessing significant genomic features of clinically relevant STs suggests that these foods can serve as potential transmission vehicles and supports widening the scope of continued surveillance for this important foodborne pathogen.

2.
Microorganisms ; 10(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744717

RESUMO

Salmonella enterica subsp. enterica serovar Bovismorbificans has caused multiple outbreaks involving the consumption of produce, hummus, and processed meat products worldwide. To elucidate the intra-serovar genomic structure of S. Bovismorbificans, a core-genome analysis with 2690 loci (based on 150 complete genomes representing Salmonella enterica serovars developed as part of this study) and a k-mer-binning based strategy were carried out on 95 whole genome sequencing (WGS) assemblies from Swiss, Canadian, and USA collections of S. Bovismorbificans strains from foodborne infections. Data mining of a digital DNA tiling array of legacy SARA and SARB strains was conducted to identify near-neighbors of S. Bovismorbificans. The core genome analysis and the k-mer-binning methods identified two polyphyletic clusters, each with emerging evolutionary properties. Four STs (2640, 142, 1499, and 377), which constituted the majority of the publicly available WGS datasets from >260 strains analyzed by k-mer-binning based strategy, contained a conserved core genome backbone with a different evolutionary lineage as compared to strains comprising the other cluster (ST150). In addition, the assortment of genotypic features contributing to pathogenesis and persistence, such as antimicrobial resistance, prophage, plasmid, and virulence factor genes, were assessed to understand the emerging characteristics of this serovar that are relevant clinically and for food safety concerns. The phylogenomic profiling of polyphyletic S. Bovismorbificans in this study corresponds to intra-serovar variations observed in S. Napoli and S. Newport serovars using similar high-resolution genomic profiling approaches and contributes to the understanding of the evolution and sequence divergence of foodborne Salmonellae. These intra-serovar differences may have to be thoroughly understood for the accurate classification of foodborne Salmonella strains needed for the uniform development of future food safety mitigation strategies.

3.
Front Microbiol ; 11: 561204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101235

RESUMO

Cronobacter species are opportunistic pathogens capable of causing life-threatening infections in humans, with serious complications arising in neonates, infants, immuno-compromised individuals, and elderly adults. The genus is comprised of seven species: Cronobacter sakazakii, Cronobacter malonaticus, Cronobacter turicensis, Cronobacter muytjensii, Cronobacter dublinensis, Cronobacter universalis, and Cronobacter condimenti. Despite a multiplicity of genomic data for the genus, little is known about likely transmission vectors. Using DNA microarray analysis, in parallel with whole genome sequencing, and targeted PCR analyses, the total gene content of two C. malonaticus, three C. turicensis, and 14 C. sakazaki isolated from various filth flies was assessed. Phylogenetic relatedness among these and other strains obtained during surveillance and outbreak investigations were comparatively assessed. Specifically, microarray analysis (MA) demonstrated its utility to cluster strains according to species-specific and sequence type (ST) phylogenetic relatedness, and that the fly strains clustered among strains obtained from clinical, food and environmental sources from United States, Europe, and Southeast Asia. This combinatorial approach was useful in data mining for virulence factor genes, and phage genes and gene clusters. In addition, results of plasmidotyping were in agreement with the species identity for each strain as determined by species-specific PCR assays, MA, and whole genome sequencing. Microarray and BLAST analyses of Cronobacter fly sequence datasets were corroborative and showed that the presence and absence of virulence factors followed species and ST evolutionary lines even though such genes were orthologous. Additionally, zebrafish infectivity studies showed that these pathotypes were as virulent to zebrafish embryos as other clinical strains. In summary, these findings support a striking phylogeny amongst fly, clinical, and surveillance strains isolated during 2010-2015, suggesting that flies are capable vectors for transmission of virulent Cronobacter spp.; they continue to circulate among United States and European populations, environments, and that this "pattern of circulation" has continued over decades.

4.
Microorganisms ; 8(2)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046365

RESUMO

: Cronobacter species are considered an opportunistic group of foodborne pathogenic bacteria capable of causing both intestinal and systemic human disease. This review describes common virulence themes shared among the seven Cronobacter species and describes multiple exoproteins secreted by Cronobacter, many of which are bacterial toxins that may play a role in human disease. The review will particularly concentrate on the virulence factors secreted by C. sakazakii, C. malonaticus, and C. turicensis, which are the primary human pathogens of interest. It has been discovered that various species-specific virulence factors adversely affect a wide range of eukaryotic cell processes including protein synthesis, cell division, and ion secretion. Many of these factors are toxins which have been shown to also modulate the host immune response. These factors are encoded on a variety of mobile genetic elements such as plasmids and transposons; this genomic plasticity implies ongoing re-assortment of virulence factor genes which has complicated our efforts to categorize Cronobacter into sharply defined genomic pathotypes.

5.
Microorganisms ; 7(11)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726673

RESUMO

Cronobacter species are a group of foodborne pathogenic bacteria that cause both intestinal and systemic human disease in individuals of all age groups. Little is known about the mechanisms that Cronobacter employ to survive and persist in foods and other environments. Toxin-antitoxin (TA) genes are thought to play a role in bacterial stress physiology, as well as in the stabilization of horizontally-acquired re-combinatorial elements such as plasmids, phage, and transposons. TA systems have been implicated in the formation of a persistence phenotype in some bacterial species including Escherichia coli and Salmonella. This project's goal was to understand the phylogenetic relatedness among TA genes present in Cronobacter. Preliminary studies showed that two typical toxin genes, fic and hipA followed species evolutionary lines. A local database of 22 TA homologs was created for Cronobacter sakazakii and a Python version 3 shell script was generated to extract TA FASTA sequences present in 234 C. sakazakii genomes previously sequenced as part of Center for Food Safety and Applied Nutrition's (CFSAN) GenomeTrakr project. BLAST analysis showed that not every C. sakazakii strain possessed all twenty-two TA loci. Interestingly, some strains contained either a toxin or an antitoxin component, but not both. Five common toxin genes: ESA_00258 (parDE toxin-antitoxin family), ESA_00804 (relBE family), ESA_01887 (relBE family), ESA_03838 (relBE family), and ESA_04273 (YhfG-Fic family) were selected for PCR analysis and the primers were designed to detect these genes. PCR analysis showed that 55 of 63 strains possessed three of these genes Sequence analysis identified homologs of the target genes and some of the strains were PCR-negative for one or more of the genes, pointing to potential nucleotide polymorphisms in those loci or that these toxin genes were absent. Phylogenetic studies using a Cronobacter pan genomic microarray showed that for the most part TAs follow species evolutionary lines except for a few toxin genes possessed by some C. malonaticus and C. universalis strains; this demonstrates that some TA orthologues share a common phylogeny. Within the C. sakazakii strains, the prevalence and distribution of these TA homologs by C. sakazakii strain BAA-894 (a powdered infant formula isolate) followed sequence-type evolutionary lineages. Understanding the phylogeny of TAs among the Cronobacter species is essential to design future studies to realize the physiological mechanisms and roles for TAs in stress adaptation and persistence of Cronobacter within food matrices and food processing environments.

6.
Stand Genomic Sci ; 13: 35, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519380

RESUMO

Cronobacter sakazakii is a Gram-negative opportunistic pathogen that causes life- threatening infantile infections, such as meningitis, septicemia, and necrotizing enterocolitis, as well as pneumonia, septicemia, and urinary tract and wound infections in adults. Here, we report 26 draft genome sequences of C. sakazakii, which were obtained from dried spices from the USA, the Middle East, China, and the Republic of Korea. The average genome size of the C. sakazakii genomes was 4393 kb, with an average of 4055 protein coding genes, and an average genome G + C content of 56.9%. The genomes contained genes related to carbohydrate transport and metabolism, amino acid transport and metabolism, and cell wall/membrane biogenesis. In addition, we identified genes encoding proteins involved in osmotic responses such as DnaJ, Aquaproin Z, ProQ, and TreF, as well as virulence-related and heat shock-related proteins. Interestingly, a metabolic island comprised of a variably-sized xylose utilization operon was found within the spice-associated C. sakazakii genomes, which supports the hypothesis that plants may serve as transmission vectors or alternative hosts for Cronobacter species. The presence of the genes identified in this study can support the remarkable phenotypic traits of C. sakazakii such as the organism's capabilities of adaptation and survival in response to adverse growth environmental conditions (e.g. osmotic and desiccative stresses). Accordingly, the genome analyses provided insights into many aspects of physiology and evolutionary history of this important foodborne pathogen.

7.
Genome Announc ; 6(15)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650569

RESUMO

Here, we present draft genome sequences of 29 Cronobacter sakazakii isolates obtained from foods of plant origin and dried-food manufacturing facilities. Assemblies and annotations resulted in genome sizes ranging from 4.3 to 4.5 Mb and 3,977 to 4,256 gene-coding sequences with G+C contents of ∼57.0%.

8.
Gut Pathog ; 10: 11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556252

RESUMO

BACKGROUND: Malonate utilization, an important differential trait, well recognized as being possessed by six of the seven Cronobacter species is thought to be largely absent in Cronobacter sakazakii (Csak). The current study provides experimental evidence that confirms the presence of a malonate utilization operon in 24 strains of sequence type (ST) 64, obtained from Europe, Middle East, China, and USA; it offers explanations regarding the genomic diversity and phylogenetic relatedness among these strains, and that of other C. sakazakii strains. RESULTS: In this study, the presence of a malonate utilization operon in these strains was initially identified by DNA microarray analysis (MA) out of a pool of 347 strains obtained from various surveillance studies involving clinical, spices, milk powder sources and powdered infant formula production facilities in Ireland and Germany, and dried dairy powder manufacturing facilities in the USA. All ST64 C. sakazakii strains tested could utilize malonate. Zebrafish embryo infection studies showed that C. sakazakii ST64 strains are as virulent as other Cronobacter species. Parallel whole genome sequencing (WGS) and MA showed that the strains phylogenetically grouped as a separate clade among the Csak species cluster. Additionally, these strains possessed the Csak O:2 serotype. The nine-gene, ~ 7.7 kbp malonate utilization operon was located in these strains between two conserved flanking genes, gyrB and katG. Plasmidotyping results showed that these strains possessed the virulence plasmid pESA3, but in contrast to the USA ST64 Csak strains, ST64 Csak strains isolated from sources in Europe and the Middle East, did not possess the type six secretion system effector vgrG gene. CONCLUSIONS: Until this investigation, the presence of malonate-positive Csak strains, which are associated with foods and clinical cases, was under appreciated. If this trait was used solely to identify Cronobacter strains, many strains would likely be misidentified. Parallel WGS and MA were useful in characterizing the total genome content of these Csak O:2, ST64, malonate-positive strains and further provides an understanding of their phylogenetic relatedness among other virulent C. sakazakii strains.

9.
Genome Announc ; 5(31)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28774978

RESUMO

We present here the draft genome of Cronobacter sakazakii GP1999, a sequence type 145 strain isolated from the rhizosphere of tomato plants. Assembly and annotation of the genome resulted in a genome of 4,504,670 bp in size, with 4,148 coding sequences, and a GC content of 56.8%.

10.
Front Microbiol ; 8: 1136, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28694793

RESUMO

Cronobacter (C.) sakazakii is an opportunistic pathogen and has been associated with serious infections with high mortality rates predominantly in pre-term, low-birth weight and/or immune compromised neonates and infants. Infections have been epidemiologically linked to consumption of intrinsically and extrinsically contaminated lots of reconstituted powdered infant formula (PIF), thus contamination of such products is a challenging task for the PIF producing industry. We present the draft genome of C. sakazakii H322, a highly persistent sequence type (ST) 83, clonal complex (CC) 65, serotype O:7 strain obtained from a batch of non-released contaminated PIF product. The presence of this strain in the production environment was traced back more than 4 years. Whole genome sequencing (WGS) of this strain together with four more ST83 strains (PIF production environment-associated) confirmed a high degree of sequence homology among four of the five strains. Phylogenetic analysis using microarray (MA) and WGS data showed that the ST83 strains were highly phylogenetically related and MA showed that between 5 and 38 genes differed from one another in these strains. All strains possessed the pESA3-like virulence plasmid and one strain possessed a pESA2-like plasmid. In addition, a pCS1-like plasmid was also found. In order to assess the potential in vivo pathogenicity of the ST83 strains, each strain was subjected to infection studies using the recently developed zebrafish embryo model. Our results showed a high (90-100%) zebrafish mortality rate for all of these strains, suggesting a high risk for infections and illness in neonates potentially exposed to PIF contaminated with ST83 C. sakazakii strains. In summary, virulent ST83, CC65, serotype CsakO:7 strains, though rarely found intrinsically in PIF, can persist within a PIF manufacturing facility for years and potentially pose significant quality assurance challenges to the PIF manufacturing industry.

11.
Genome Announc ; 5(8)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28232440

RESUMO

We introduce the draft genome sequences of five enterotoxigenic Bacillus cereus strains: Bc 12, Bc 67, Bc 111, Bc 112, and Bc 113, which were obtained from powdered infant formula. The genome sizes of the strains ranged from 5.5 to 5.8 Mb, and the G+C contents were ~35.2%.

12.
Front Microbiol ; 8: 134, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28232819

RESUMO

Little is known about secretion of outer membrane vesicles (OMVs) by Cronobacter. In this study, OMVs isolated from Cronobacter sakazakii, Cronobacter turicensis, and Cronobacter malonaticus were examined by electron microscopy (EM) and their associated outer membrane proteins (OMP) and genes were analyzed by SDS-PAGE, protein sequencing, BLAST, PCR, and DNA microarray. EM of stained cells revealed that the OMVs are secreted as pleomorphic micro-vesicles which cascade from the cell's surface. SDS-PAGE analysis identified protein bands with molecular weights of 18 kDa to >100 kDa which had homologies to OMPs such as GroEL; OmpA, C, E, F, and X; MipA proteins; conjugative plasmid transfer protein; and an outer membrane auto-transporter protein (OMATP). PCR analyses showed that most of the OMP genes were present in all seven Cronobacter species while a few genes (OMATP gene, groEL, ompC, mipA, ctp, and ompX) were absent in some phylogenetically-related species. Microarray analysis demonstrated sequence divergence among the OMP genes that was not captured by PCR. These results support previous findings that OmpA and OmpX may be involved in virulence of Cronobacter, and are packaged within secreted OMVs. These results also suggest that other OMV-packaged OMPs may be involved in roles such as stress response, cell wall and plasmid maintenance, and extracellular transport.

13.
IEEE Trans Vis Comput Graph ; 18(4): 555-64, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22402682

RESUMO

Walking is only possible within immersive virtual environments that fit inside the boundaries of the user's physical workspace. To reduce the severity of the restrictions imposed by limited physical area, we introduce "impossible spaces," a new design mechanic for virtual environments that wish to maximize the size of the virtual environment that can be explored with natural locomotion. Such environments make use of self-overlapping architectural layouts, effectively compressing comparatively large interior environments into smaller physical areas. We conducted two formal user studies to explore the perception and experience of impossible spaces. In the first experiment, we showed that reasonably small virtual rooms may overlap by as much as 56% before users begin to detect that they are in an impossible space, and that the larger virtual rooms that expanded to maximally fill our available 9.14 m x 9.14 m workspace may overlap by up to 31%. Our results also demonstrate that users perceive distances to objects in adjacent overlapping rooms as if the overall space was uncompressed, even at overlap levels that were overtly noticeable. In our second experiment, we combined several well-known redirection techniques to string together a chain of impossible spaces in an expansive outdoor scene. We then conducted an exploratory analysis of users' verbal feedback during exploration, which indicated that impossible spaces provide an even more powerful illusion when users are naive to the manipulation.


Assuntos
Interface Usuário-Computador , Caminhada , Adulto , Arquitetura , Gráficos por Computador , Percepção de Distância , Meio Ambiente , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Enjoo devido ao Movimento/etiologia , Percepção Espacial , Adulto Jovem
14.
Am J Psychol ; 124(4): 379-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22324279

RESUMO

Two experiments studied perceptual comparisons with cues that vary in one of four ways (picture, sound, spoken word, or printed word) and with targets that are either pictures or environmental sounds. The basic question probed whether modality or differences in format were factors that would influence picture and sound perception. Also of interest were cue effect differences when targets are presented on either the right or left side. Students responded to a same-different reaction time task that entailed matching cue-target pairs to determine whether the successive stimulus events represented features drawn from the same basic item. Cue type influenced reaction times to pictures and environmental sounds, but the effects were qualified by response type and with picture targets by presentation side. These results provide some additional evidence of processing asymmetry when pictures are directed to either the right or left hemisphere, as well as for some asymmetries in cross-modality cuing. Implications of these findings for theories of multisensory processing and models of object recognition are discussed.


Assuntos
Associação , Percepção Auditiva , Dominância Cerebral , Reconhecimento Visual de Modelos , Leitura , Percepção da Fala , Adolescente , Sinais (Psicologia) , Feminino , Humanos , Julgamento , Masculino , Modelos Psicológicos , Tempo de Reação , Adulto Jovem
15.
IEEE Trans Vis Comput Graph ; 16(4): 690-702, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20467065

RESUMO

We report a series of experiments conducted to investigate the effects of travel technique on information gathering and cognition in complex virtual environments. In the first experiment, participants completed a non-branching multilevel 3D maze at their own pace using either real walking or one of two virtual travel techniques. In the second experiment, we constructed a real-world maze with branching pathways and modeled an identical virtual environment. Participants explored either the real or virtual maze for a predetermined amount of time using real walking or a virtual travel technique. Our results across experiments suggest that for complex environments requiring a large number of turns, virtual travel is an acceptable substitute for real walking if the goal of the application involves learning or reasoning based on information presented in the virtual world. However, for applications that require fast, efficient navigation or travel that closely resembles real-world behavior, real walking has advantages over common joystick-based virtual travel techniques.


Assuntos
Cognição/fisiologia , Gráficos por Computador , Movimento/fisiologia , Orientação/fisiologia , Análise e Desempenho de Tarefas , Interface Usuário-Computador , Simulação por Computador , Ecossistema , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA