Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156974

RESUMO

Broadly reactive antibodies targeting the influenza A virus hemagglutinin (HA) head domain are thought to be rare and to require extensive somatic mutations or unusual structural features to achieve breadth against divergent HA subtypes. Here we describe common genetic and structural features of protective human antibodies from several individuals recognizing the trimer interface (TI) of the influenza A HA head, a recently identified site of vulnerability. We examined the sequence of TI-reactive antibodies, determined crystal structures for TI antibody-antigen complexes, and analyzed the contact residues of the antibodies on HA to discover common genetic and structural features of TI antibodies. Our data reveal that many TI antibodies are encoded by a light chain variable gene segment incorporating a shared somatic mutation. In addition, these antibodies have a shared acidic residue in the heavy chain despite originating from diverse heavy chain variable gene segments. These studies show that the TI region of influenza A HA is a major antigenic site with conserved structural features that are recognized by a common human B cell public clonotype. The canonical nature of this antibody-antigen interaction suggests that the TI epitope might serve as an important target for structure-based vaccine design.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia
2.
Biochemistry ; 60(11): 825-846, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705117

RESUMO

Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Modelos Biológicos , Polissacarídeos/imunologia
3.
Structure ; 28(10): 1124-1130.e5, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32783953

RESUMO

The amount of antibody (Ab) variable gene sequence information is expanding rapidly, but our ability to predict the function of Abs from sequence alone is limited. Here, we describe a sequence-to-function prediction method that couples structural data for a single Ab/antigen (Ag) complex with repertoire data. We used a position-specific structure-scoring matrix (P3SM) incorporating structure-prediction scores from Rosetta to identify Ab variable loops that have predicted structural similarity to the influenza virus-specific human Ab CH65. The P3SM approach identified new members of this Ab class. Recombinant Ab expression, crystallography, and virus inhibition assays showed that the HCDR3 loops of the newly identified Abs possessed similar structure and antiviral activity as the comparator CH65. This approach enables discovery of new human Abs with desired structure and function using cDNA repertoires that are obtained readily with current amplicon sequencing techniques.


Assuntos
Anticorpos/química , Regiões Determinantes de Complementaridade/química , Epitopos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Anticorpos/genética , Anticorpos/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Cristalografia por Raios X , Bases de Dados Factuais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
4.
BMC Bioinformatics ; 21(1): 314, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677886

RESUMO

BACKGROUND: Recent advances in DNA sequencing technologies have enabled significant leaps in capacity to generate large volumes of DNA sequence data, which has spurred a rapid growth in the use of bioinformatics as a means of interrogating antibody variable gene repertoires. Common tools used for annotation of antibody sequences are often limited in functionality, modularity and usability. RESULTS: We have developed PyIR, a Python wrapper and library for IgBLAST, which offers a minimal setup CLI and API, FASTQ support, file chunking for large sequence files, JSON and Python dictionary output, and built-in sequence filtering. CONCLUSIONS: PyIR offers improved processing speed over multithreaded IgBLAST (version 1.14) when spawning more than 16 processes on a single computer system. Its customizable filtering and data encapsulation allow it to be adapted to a wide range of computing environments. The API allows for IgBLAST to be used in customized bioinformatics workflows.


Assuntos
Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/genética , Alinhamento de Sequência , Software , Sequência de Bases , Humanos , Análise de Sequência de DNA , Fatores de Tempo , Interface Usuário-Computador
5.
Lab Invest ; 100(8): 1111-1123, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32203152

RESUMO

An ability to characterize the cellular composition and spatial organization of the tumor microenvironment (TME) using multiplexed IHC has been limited by the techniques available. Here we show the applicability of multiplexed ion beam imaging (MIBI) for cell phenotype identification and analysis of spatial relationships across numerous tumor types. Formalin-fixed paraffin-embedded (FFPE) samples from tumor biopsies were simultaneously stained with a panel of 15 antibodies, each labeled with a specific metal isotope. Multi-step processing produced images of the TME that were further segmented into single cells. Frequencies of different cell subsets and the distributions of nearest neighbor distances between them were calculated using this data. A total of 50 tumor specimens from 15 tumor types were characterized for their immune profile and spatial organization. Most samples showed infiltrating cytotoxic T cells and macrophages present amongst tumor cells. Spatial analysis of the TME in two ovarian serous carcinoma images highlighted differences in the degree of mixing between tumor and immune cells across samples. Identification of admixed PD-L1+ macrophages and PD-1+ T cells in an urothelial carcinoma sample allowed for the detailed observations of immune cell subset spatial arrangement. These results illustrate the high-parameter capability of MIBI at a sensitivity and resolution uniquely suited to understanding the complex tumor immune landscape including the spatial relationships of immune and tumor cells and expression of immunoregulatory proteins.


Assuntos
Biomarcadores Tumorais/metabolismo , Diagnóstico por Imagem/métodos , Neoplasias/diagnóstico por imagem , Microambiente Tumoral , Antígeno B7-H1/metabolismo , Diagnóstico Diferencial , Humanos , Macrófagos/metabolismo , Neoplasias/classificação , Receptor de Morte Celular Programada 1/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Linfócitos T Citotóxicos/metabolismo
6.
PLoS One ; 15(1): e0228412, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978140

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0100839.].

7.
Cell ; 177(5): 1136-1152.e18, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100268

RESUMO

Here, we describe the discovery of a naturally occurring human antibody (Ab), FluA-20, that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface, suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses, which explains the Ab's extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers, inhibited cell-to-cell spread of virus in culture, and protected mice against challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines.


Assuntos
Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae , Animais , Cães , Células Madin Darby de Rim Canino , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/prevenção & controle
8.
Front Immunol ; 10: 558, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967877

RESUMO

Antigen recognition by mammalian antibodies represents the most diverse setting for protein-protein interactions, because antibody variable regions contain exceptionally diverse variable gene repertoires of DNA sequences containing combinatorial, non-templated junctional mutational diversity. Some animals use additional strategies to achieve structural complexity in the antibody combining site, and one of the most interesting of these is the formation of ultralong heavy chain complementarity determining region 3 loops in cattle. Repertoire sequencing studies of bovine antibody heavy chain variable sequences revealed that bovine antibodies can contain heavy chain complementarity determining region 3 (CDRH3) loops with 60 or more amino acids, with complex structures stabilized by multiple disulfide bonds. It is clear that bovine antibodies can achieve long, peculiarly structured CDR3s, but the range of diversity and complexity of those structures is poorly understood. We determined the atomic resolution structure of seven ultralong bovine CDRH3 loops. The studies, combined with five previous structures, reveal a large diversity of cysteine pairing variations, and highly diverse globular domains.


Assuntos
Regiões Determinantes de Complementaridade/química , Cadeias Pesadas de Imunoglobulinas/química , Animais , Bovinos , Regiões Determinantes de Complementaridade/imunologia , Cadeias Pesadas de Imunoglobulinas/imunologia , Domínios Proteicos , Estrutura Secundária de Proteína
9.
Nature ; 566(7744): 398-402, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30760926

RESUMO

The human genome contains approximately 20 thousand protein-coding genes1, but the size of the collection of antigen receptors of the adaptive immune system that is generated by the recombination of gene segments with non-templated junctional additions (on B cells) is unknown-although it is certainly orders of magnitude larger. It has not been established whether individuals possess unique (or private) repertoires or substantial components of shared (or public) repertoires. Here we sequence recombined and expressed B cell receptor genes in several individuals to determine the size of their B cell receptor repertoires, and the extent to which these are shared between individuals. Our experiments revealed that the circulating repertoire of each individual contained between 9 and 17 million B cell clonotypes. The three individuals that we studied shared many clonotypes, including between 1 and 6% of B cell heavy-chain clonotypes shared between two subjects (0.3% of clonotypes shared by all three) and 20 to 34% of λ or κ light chains shared between two subjects (16 or 22% of λ or κ light chains, respectively, were shared by all three). Some of the B cell clonotypes had thousands of clones, or somatic variants, within the clonotype lineage. Although some of these shared lineages might be driven by exposure to common antigens, previous exposure to foreign antigens was not the only force that shaped the shared repertoires, as we also identified shared clonotypes in umbilical cord blood samples and all adult repertoires. The unexpectedly high prevalence of shared clonotypes in B cell repertoires, and identification of the sequences of these shared clonotypes, should enable better understanding of the role of B cell immune repertoires in health and disease.


Assuntos
Anticorpos/genética , Anticorpos/imunologia , Linfócitos B/imunologia , Células Clonais/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Adulto , Sequência de Aminoácidos , Anticorpos/química , Antígenos/imunologia , Linfócitos B/citologia , Linfócitos B/metabolismo , Sequência de Bases , Células Clonais/citologia , Células Clonais/metabolismo , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Voluntários Saudáveis , Humanos , Recém-Nascido , Masculino , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/genética , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 113(44): E6849-E6858, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27791117

RESUMO

Palivizumab was the first antiviral monoclonal antibody (mAb) approved for therapeutic use in humans, and remains a prophylactic treatment for infants at risk for severe disease because of respiratory syncytial virus (RSV). Palivizumab is an engineered humanized version of a murine mAb targeting antigenic site II of the RSV fusion (F) protein, a key target in vaccine development. There are limited reported naturally occurring human mAbs to site II; therefore, the structural basis for human antibody recognition of this major antigenic site is poorly understood. Here, we describe a nonneutralizing class of site II-specific mAbs that competed for binding with palivizumab to postfusion RSV F protein. We also describe two classes of site II-specific neutralizing mAbs, one of which escaped competition with nonneutralizing mAbs. An X-ray crystal structure of the neutralizing mAb 14N4 in complex with F protein showed that the binding angle at which human neutralizing mAbs interact with antigenic site II determines whether or not nonneutralizing antibodies compete with their binding. Fine-mapping studies determined that nonneutralizing mAbs that interfere with binding of neutralizing mAbs recognize site II with a pose that facilitates binding to an epitope containing F surface residues on a neighboring protomer. Neutralizing antibodies, like motavizumab and a new mAb designated 3J20 that escape interference by the inhibiting mAbs, avoid such contact by binding at an angle that is shifted away from the nonneutralizing site. Furthermore, binding to rationally and computationally designed site II helix-loop-helix epitope-scaffold vaccines distinguished neutralizing from nonneutralizing site II antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/química , Antivirais/farmacologia , Linhagem Celular , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Camundongos , Mutagênese , Palivizumab/farmacologia , Vacinas contra Vírus Sincicial Respiratório/química , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos
11.
JCI Insight ; 1(10)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27482543

RESUMO

Since 2011, over 300 human cases of infection, especially in exposed children, with the influenza A H3N2 variant (H3N2v) virus that circulates in swine in the US have been reported. The structural and genetic basis for the lack of protection against H3N2v induced by vaccines containing seasonal H3N2 antigens is poorly understood. We isolated 17 human monoclonal antibodies (mAbs) that neutralized H3N2v virus from subjects experimentally immunized with an H3N2v candidate vaccine. Six mAbs exhibited very potent neutralizing activity (IC50 < 200 ng/ml) against the H3N2v virus but not against current human H3N2 circulating strains. Fine epitope mapping and structural characterization of antigen-antibody complexes revealed that H3N2v specificity was attributable to amino acid polymorphisms in the 150-loop and the 190-helix antigenic sites on the hemagglutinin protein. H3N2v-specific antibodies also neutralized human H3N2 influenza strains naturally circulating between 1995 and 2005. These results reveal a high level of antigenic relatedness between the swine H3N2v virus and previously circulating human strains, consistent with the fact that early human H3 seasonal strains entered the porcine population in the 1990s and reentered the human population, where they had not been circulating, as H3N2v about a decade later. The data also explain the increased susceptibility to H3N2v viruses in young children, who lack prior exposure to human seasonal strains from the 1990s.

12.
Biochemistry ; 55(34): 4748-63, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27490953

RESUMO

Previously, we published an article providing an overview of the Rosetta suite of biomacromolecular modeling software and a series of step-by-step tutorials [Kaufmann, K. W., et al. (2010) Biochemistry 49, 2987-2998]. The overwhelming positive response to this publication we received motivates us to here share the next iteration of these tutorials that feature de novo folding, comparative modeling, loop construction, protein docking, small molecule docking, and protein design. This updated and expanded set of tutorials is needed, as since 2010 Rosetta has been fully redesigned into an object-oriented protein modeling program Rosetta3. Notable improvements include a substantially improved energy function, an XML-like language termed "RosettaScripts" for flexibly specifying modeling task, new analysis tools, the addition of the TopologyBroker to control conformational sampling, and support for multiple templates in comparative modeling. Rosetta's ability to model systems with symmetric proteins, membrane proteins, noncanonical amino acids, and RNA has also been greatly expanded and improved.


Assuntos
Modelos Moleculares , Software , Algoritmos , Biologia Computacional , Internet , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Proteínas/química , RNA/química , Interface Usuário-Computador
13.
PLoS One ; 11(5): e0154811, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182833

RESUMO

Structural restrictions are present even in the most sequence diverse portions of antibodies, the complementary determining region (CDR) loops. Previous studies identified robust rules that define canonical structures for five of the six CDR loops, however the heavy chain CDR 3 (HCDR3) defies standard classification attempts. The HCDR3 loop can be subdivided into two domains referred to as the "torso" and the "head" domains and two major families of canonical torso structures have been identified; the more prevalent "bulged" and less frequent "non-bulged" torsos. In the present study, we found that Rosetta loop modeling of 28 benchmark bulged HCDR3 loops is improved with knowledge-based structural restraints developed from available antibody crystal structures in the PDB. These restraints restrict the sampling space Rosetta searches in the torso domain, limiting the φ and ψ angles of these residues to conformations that have been experimentally observed. The application of these restraints in Rosetta result in more native-like structure sampling and improved score-based differentiation of native-like HCDR3 models, significantly improving our ability to model antibody HCDR3 loops.


Assuntos
Regiões Determinantes de Complementaridade/química , Modelos Moleculares , Conformação Proteica , Algoritmos , Análise por Conglomerados , Cadeias Pesadas de Imunoglobulinas/química , Região Variável de Imunoglobulina/química , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 113(16): 4446-51, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044078

RESUMO

Development of broadly neutralizing antibodies (bnAbs) against HIV-1 usually requires prolonged infection and induction of Abs with unusual features, such as long heavy-chain complementarity-determining region 3 (HCDR3) loops. Here we sought to determine whether the repertoires of HIV-1-naïve individuals contain Abs with long HCDR3 loops that could mediate HIV-1 neutralization. We interrogated at massive scale the structural properties of long Ab HCDR3 loops in HIV-1-naïve donors, searching for structured HCDR3s similar to those of the HIV-1 bnAb PG9. We determined the nucleotide sequences encoding 2.3 × 10(7)unique HCDR3 amino acid regions from 70 different HIV-1-naïve donors. Of the 26,917 HCDR3 loops with 30-amino acid length identified, we tested 30 for further study that were predicted to have PG9-like structure when chimerized onto PG9. Three of these 30 PG9 chimeras bound to the HIV-1 gp120 monomer, and two were neutralizing. In addition, we found 14 naturally occurring HCDR3 sequences that acquired the ability to bind to the HIV-1 gp120 monomer when adding 2- to 7-amino acid mutations via computational design. Of those 14 designed Abs, 8 neutralized HIV-1, with IC50values ranging from 0.7 to 98 µg/mL. These data suggest that the repertoire of HIV-1-naïve individuals contains rare B cells that encode HCDR3 loops that bind or neutralize HIV-1 when presented on a PG9 background with relatively few or no additional mutations. Long HCDR3 sequences are present in the HIV-naïve B-cell repertoire, suggesting that this class of bnAbs is a favorable target for rationally designed preventative vaccine efforts.


Assuntos
Anticorpos Neutralizantes , Regiões Determinantes de Complementaridade , Anticorpos Anti-HIV , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/imunologia , Cadeias Pesadas de Imunoglobulinas , Substituição de Aminoácidos , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Doadores de Sangue , Feminino , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Masculino , Mutação de Sentido Incorreto
15.
PLoS One ; 9(6): e100839, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24956460

RESUMO

Recent developments in genetic technologies allow deep analysis of the sequence diversity of immune repertoires, but little work has been reported on the architecture of immune repertoires in mucosal tissues. Antibodies are the key to prevention of infections at the mucosal surface, but it is currently unclear whether the B cell repertoire at mucosal surfaces reflects the dominant antibodies found in the systemic compartment or whether mucosal tissues harbor unique repertoires. We examined the expressed antibody variable gene repertoires from 10 different human tissues using RNA samples derived from a large number of individuals. The results revealed that mucosal tissues such as stomach, intestine and lung possess unique antibody gene repertoires that differed substantially from those found in lymphoid tissues or peripheral blood. Mutation frequency analysis of mucosal tissue repertoires revealed that they were highly mutated, with little evidence for the presence of naïve B cells, in contrast to blood. Mucosal tissue repertoires possessed longer heavy chain complementarity determining region 3 loops than lymphoid tissue repertoires. We also noted a large increase in frequency of both insertions and deletions in the small intestine antibody repertoire. These data suggest that mucosal immune repertoires are distinct in many ways from the systemic compartment.


Assuntos
Anticorpos/genética , Regulação da Expressão Gênica , Região Variável de Imunoglobulina/genética , Especificidade de Órgãos/genética , Adolescente , Adulto , Anticorpos/sangue , Medula Óssea/metabolismo , Análise por Conglomerados , Regiões Determinantes de Complementaridade/genética , DNA/metabolismo , Demografia , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Região Variável de Imunoglobulina/sangue , Tecido Linfoide/metabolismo , Pessoa de Meia-Idade , Mucosa/metabolismo , Mutação/genética , Taxa de Mutação , RNA/genética , RNA/metabolismo , Hipermutação Somática de Imunoglobulina/genética , Recombinação V(D)J/genética , Adulto Jovem
17.
J Bacteriol ; 189(24): 9122-5, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921297

RESUMO

The bacterial transposon Tn7 has a pathway of transposition that preferentially targets conjugal plasmids. We propose that this same transposition pathway recognizes a structure or complex found during filamentous bacteriophage replication, likely by targeting negative-strand synthesis. The ability to insert into both plasmid and bacteriophage DNAs that are capable of cell-to-cell transfer would help explain the wide distribution of Tn7 relatives.


Assuntos
Bacteriófago M13/genética , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Recombinação Genética , Escherichia coli/fisiologia , Escherichia coli/virologia , Genoma Viral , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA