Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
Phys Chem Chem Phys ; 24(3): 1390-1398, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34981806

RESUMO

Using fully internally contracted (FIC)-CASPT2 analytical gradients, geometry optimizations of spin-crossover complexes are reported. This approach is tested on a series of Fe(II) complexes with different sizes, ranging from 13 to 61 atoms. A combination of active space and basis set choices are employed to investigate their role in determining reliable molecular geometries. The reported strategy demonstrates that a wave function-based level of theory can be used to optimize the geometries of metal complexes in reasonable times and enables one to treat the molecular geometry and electronic structure of the complexes using the same level of theory. For a series of smaller Fe(II) SCO complexes, strong field ligands in the LS state result in geometries with the largest differences between DFT and CASPT2; however, good agreement overall is observed between DFT and CASPT2. For the larger complexes, moderate sized basis sets yield geometries that compare well with DFT and available experimental data. We recommend using the (10e,12o) active space since convergence to a minimum structure was more efficient than with truncated active spaces despite having similar Fe-ligand bond distances.

4.
Chem Sci ; 11(36): 9971-9977, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34094259

RESUMO

The spin state in heterobimetallic complexes heavily influences both reactivity and magnetism. Exerting control over spin states in main group-based heterobimetallics requires a different approach as the orbital interactions can differ substantially from that of classic coordination complexes. By deliberately engendering an energetic mismatch within the two metals in a bimetallic complex we can mimic the electronic structure of lanthanides. Towards this end, we report a new family of complexes, [Ph,MeTpMSnPh3] where M = Mn (3), Fe (4), Co (5), Ni (6), Zn (7), featuring unsupported bonding between a transition metal and Sn which represent an unusual high spin electronic structure. Analysis of the frontier orbitals reveal the desired orbital mismatch with Sn 5s/5p primarily interacting with 4s/4p M orbitals yielding localized, non-bonding d orbitals. This approach offers a mechanism to design and control spin states in bimetallic complexes.

6.
J Chem Phys ; 151(2): 024303, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31301726

RESUMO

A relativistic coupled-cluster version of the Feller-Peterson-Dixon composite method has been used to accurately calculate the first ionization potentials (IPs) and electron affinities (EAs) of the post-d, p-block elements Ga-Rn. Complete basis set extrapolations including outer-core correlation at the CCSD(T) level of theory were combined with contributions from higher order electron correlation up to CCSDTQ, quantum electrodynamic effects (Lamb shift), and spin-orbit (SO) coupling including the Gaunt contribution. Several methods for including SO were investigated, in which all involved the four-component (4c) Dirac-Coulomb (DC) Hamiltonian. The treatment of SO coupling was the contribution that limited the final accuracy of the present results. In the cases where 4c-DC-CCSD(T) could be reliably used for the SO contributions, the final composite IPs and EAs agreed with the available experimental values to within an unsigned average error of just 0.16 and 0.20 kcal/mol, respectively. In all cases, the final IPs and EAs were within 1 kcal/mol of the available experimental values, except for the EAs of the group 13 elements (Ga, In, and Tl), where the currently accepted experimental values appear to be too large by as much as 4 kcal/mol. The values predicted in this work, which have estimated uncertainties of ±0.5 kcal/mol, are 5.25 (Ga), 7.69 (In), and 7.39 (Tl) kcal/mol. For the EAs of Po and At, which do not have experimental values, the current calculations predict values of 34.2 and 55.8 kcal/mol with estimated uncertainties of ±0.6 and ±0.3 kcal/mol, respectively.

7.
J Chem Phys ; 147(12): 124309, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28964036

RESUMO

High level Brueckner doubles with triples correction method-based ab initio calculations have been used to investigate the nature of intramolecular hydrogen bonding and intramolecular hydrogen atom transfer in cis-malonaldehyde (MA) and its radical analogues. The radicals considered here are the ones that correspond to the homolytic cleavage of C-H bonds in cis-MA. The results suggest that cis-MA and its radical analogues, cis-MARS, and cis-MARA, both exist in planar geometry. The calculated intramolecular O-H⋯O=C bond in cis-MA is shorter than that in the radical analogues. The intramolecular hydrogen bond in cis-MA is stronger than in its radicals by at least 3.0 kcal/mol. The stability of a cis-malonaldehyde radical correlates with the extent of electron spin delocalization; cis-MARA, in which the radical spin is more delocalized, is the most stable MA radical, whereas cis-MARS, in which the radical spin is strongly localized, is the least stable radical. The natural bond orbital analysis indicates that the intramolecular hydrogen bonding (O⋯H⋯O) in cis-malonaldehyde radicals is stabilized by the interaction between the lone pair orbitals of donor oxygen and the σ* orbital of acceptor O-H bond (n → σ*OH). The calculated barriers indicate that the intramolecular proton transfer in cis-MA involves 2.2 kcal/mol lower barrier than that in cis-MARS.

8.
J Phys Chem A ; 121(10): 2180-2186, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28195479

RESUMO

Correlated molecular orbital theory at the coupled cluster CCSD(T) level with augmented correlation consistent basis sets including F12 explicit correlation has been used to predict the structure and energetic properties of the isomers of [C,N,O,P] and [C,N,S,P]. The predicted ground states are the species derived from a trivalent P with a P═O or P═S bond and a cyano group bonded to the P. The other low energy isomers are the isonitriles and they are 1.4 kcal/mol and 6.6 less stable than the ground state for P═O and P═S, respectively. An analysis of the bond energies is provided and the values are compared to the corresponding [N,N,C,O] isomers. Data are provided for searching for these species in interstellar regions.

9.
J Chem Phys ; 145(22): 224303, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27984883

RESUMO

Near-equilibrium potential energy surfaces have been calculated for both the PCS radical and its anion using a composite coupled cluster approach based on explicitly correlated F12 methods in order to provide accurate structures and spectroscopic properties. These transient species are still unknown and the present study provides theoretical predictions of the radical and its anion for the first time. Since these species are strongly suggested to play an important role as intermediates in the interstellar medium, the rotational and vibrational spectroscopic parameters are presented to help aid in the identification and assignment of these spectra. The rotational constants produced will aid in ground-based observation. Both the PCS radical and the PCS- anion are linear. In the PCS- anion, which has a predicted adiabatic electron binding energy (adiabatic electron affinity of PCS) of 65.6 kcal/mol, the P-C bond is stronger than the corresponding neutral radical showing almost triple bond character, while the C-S bond is weaker, showing almost single bond character in the anion. The PCS anion shows a smaller rotational constant than that of the neutral. The ω3 stretching vibrational frequencies of PCS- are red-shifted from the radical, while the ω1 and ω2 vibrations are blue-shifted with ω1 demonstrating the largest blue shift. The ro-vibronic spectrum of the PCS radical has been accurately calculated in variational nuclear motion calculations including both Renner-Teller (RT) and spin-orbit (SO) coupling effects using the composite potential energy near-equilibrium potential energy and coupled cluster dipole moment surfaces. The spectrum is predicted to be very complicated even at low energies due to the presence of a strong Fermi resonance between the bending mode and symmetric stretch, but also due to similar values of the bending frequency, RT, and SO splittings.

10.
J Chem Phys ; 145(14): 144301, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782533

RESUMO

An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol-1. The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm-1, and a shift of all UV absorption bands to higher energies.

11.
J Chem Phys ; 145(12): 124311, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27782681

RESUMO

In moving beyond the second row of the periodic table for molecules of astronomical and atmospheric significance, the exploration of sulfur and phosphorus chemistry is essential. Additionally, silicon is abundant in most astrophysical environments and is a major component of most rocky bodies. The triatomic molecule composed of each of these atoms is therefore a tantalizing candidate for spectroscopic characterization for astrophysical reasons as well as gaining further understanding into the chemical physics of molecules that are not carbon-based. The current work employs high-level quantum chemical techniques to provide new insights into this simplest of heterogeneous third-row atom systems. The fundamental vibrational frequencies are all within the 350-600 cm-1 range and do not demonstrate strong anharmonicities. These frequencies, rotational constants, vibrationally excited state spectroscopic data, and related isotopic substitution information produced will aid in laboratory experimentation and, even potentially, telescopic observation since modern instruments possess the power to resolve extremely fine details.

12.
J Phys Chem A ; 120(10): 1691-7, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26914520

RESUMO

Correlated molecular orbital theory at the coupled cluster CCSD(T) level with augmented correlation consistent basis sets has been used to predict the structure and energetic properties of the isomers of [Si,N,S] and [Si,P,S]. The predicted ground states are linear (2)SNSi and cyclic (2)SPSi. The other two isomers are predicted to be ∼20 to 50 kcal/mol less stable than the ground state. The excess spin is mainly on S for (2)SNSi and on P for (2)SPSi. The calculated total atomization energies with the CBS limits derived from different methods differ by ∼2 kcal/mol. The results provide the best available heats of formation for these species. The bond dissociation energies (BDEs) in (2)SNSi are comparable to those in the corresponding diatomic molecules. For cyclic (2)SPSi, the formation of (4)P + (2)SSi requires less energy than the other bond dissociation processes. The BDEs in the higher energy isomers are substantially smaller than the corresponding diatomic species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA