Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 1): 131664, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636757

RESUMO

Pseudomonas strain 2ASCA isolated in subarctic Québec, Canada, produced a cell membrane bound levan-type exopolymer (yield 1.17 g/L), after incubation in growth media containing 6 % sucrose (w/v) at temperature of 15 °C for 96 h. The objective of this study was to optimize levan production by varying the growth parameters. Moreover, the polymer's chemical characterization has been studied with the aim of increasing knowledge and leading to future applications in many fields, including heavy metal remediation. Higher levan yields (7.37 g/L) were reached by setting up microbial fermentation conditions based on the re-use of the molasses obtained from sugar beet processing. Spectroscopy analyses confirmed the levan-type nature of the exopolymer released by strain 2ASCA, consisting of a ß-(2,6)-linked fructose repeating unit. Gel permeation chromatography revealed that the polymer has a molecular weight of 13 MDa. Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) showed that the levan sequestered with a strong affinity Cr(III), which has never been previously reported, highlighting an interesting biosorption potential. In addition, SEM analysis revealed the formation of nanoparticles in acidified water solution.

2.
Appl Microbiol Biotechnol ; 106(21): 7173-7185, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36156161

RESUMO

A synergistic approach using cultivation methods, chemical, and bioinformatic analyses was applied to explore the potential of Pseudoalteromonas sp. S8-8 in the production of extracellular polymeric substances (EPSs) and the possible physiological traits related to heavy metal and/or antibiotic resistance. The effects of different parameters (carbon source, carbon source concentration, temperature, pH and NaCl supplement) were tested to ensure the optimization of growth conditions for EPS production by the strain S8-8. The highest yield of EPS was obtained during growth in culture medium supplemented with glucose (final concentration 2%) and NaCl (final concentration 3%), at 15 °C and pH 7. The EPS was mainly composed of carbohydrates (35%), followed by proteins and uronic acids (2.5 and 2.77%, respectively) and showed a monosaccharidic composition of glucose: mannose: galactosamine: galactose in the relative molar proportions of 1:0.7:0.5:0.4, as showed by the HPAE-PAD analysis. The detection of specific molecular groups (sulfates and uronic acid content) supported the interesting properties of EPSs, i.e. the emulsifying and cryoprotective action, heavy metal chelation, with interesting implication in bioremediation and biomedical fields. The analysis of the genome allowed to identify a cluster of genes involved in cellulose biosynthesis, and two additional gene clusters putatively involved in EPS biosynthesis. KEY POINTS: • A cold-adapted Pseudoalteromonas strain was investigated for EPS production. • The EPS showed emulsifying, cryoprotective, and heavy metal chelation functions. • Three gene clusters putatively involved in EPS biosynthesis were evidenced by genomic insights.


Assuntos
Metais Pesados , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Cloreto de Sódio/metabolismo , Polissacarídeos Bacterianos/metabolismo , Galactose/metabolismo , Manose/metabolismo , Regiões Antárticas , Ácidos Urônicos/metabolismo , Metais Pesados/metabolismo , Sulfatos/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Galactosamina , Celulose/metabolismo
3.
Front Microbiol ; 13: 923038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756030

RESUMO

Parageobacillus thermantarcticus strain M1 is a Gram-positive, motile, facultative anaerobic, spore forming, and thermophilic bacterium, isolated from geothermal soil of the crater of Mount Melbourne (74°22' S, 164°40' E) during the Italian Antarctic Expedition occurred in Austral summer 1986-1987. Strain M1 demonstrated great biotechnological and industrial potential owing to its ability to produce exopolysaccharides (EPSs), ethanol and thermostable extracellular enzymes, such as an xylanase and a ß-xylosidase, and intracellular ones, such as xylose/glucose isomerase and protease. Furthermore, recent studies revealed its high potential in green chemistry due to its use in residual biomass transformation/valorization and as an appropriate model for microbial astrobiology studies. In the present study, using a systems-based approach, genomic analysis of P. thermantarcticus M1 was carried out to enlighten its functional characteristics. The elucidation of whole-genome organization of this thermophilic cell factory increased our understanding of biological mechanisms and pathways, by providing valuable information on the essential genes related to the biosynthesis of nucleotide sugar precursors, monosaccharide unit assembly, as well as the production of EPSs and ethanol. In addition, gene prediction and genome annotation studies identified genes encoding xylanolytic enzymes that are required for the conversion of lignocellulosic materials to high-value added molecules. Our findings pointed out the significant potential of strain M1 in various biotechnological and industrial applications considering its capacity to produce EPSs, ethanol and thermostable enzymes via the utilization of lignocellulosic waste materials.

4.
Microorganisms ; 9(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065163

RESUMO

The isolation and molecular and chemo-taxonomic identification of seventeen halophilic archaea from the Santa Bárbara saltern, Sonora, México, were performed. Eight strains were selected based on pigmentation. Molecular identification revealed that the strains belonged to the Haloarcula, Halolamina and Halorubrum genera. Neutral lipids (quinones) were identified in all strains. Glycolipid S-DGD was found only in Halolamina sp. strain M3; polar phospholipids 2,3-O-phytanyl-sn-glycerol-1-phosphoryl-3-sn-glycerol (PG), 2,3-di-O-phytanyl-sn-glycero-1-phospho-3'-sn-glycerol-1'-methyl phosphate (PGP-Me) and sodium salt 1-(3-sn-phosphatidyl)-rac-glycerol were found in all the strains; and one unidentified glyco-phospholipid in strains M1, M3 and M4. Strains M1, M3 and M5 were selected for further studies based on carotenoid production. The effect of glucose and succinic and glutamic acid on carotenoid production was assessed. In particular, carotenoid production and growth significantly improved in the presence of glucose in strains Haloarcula sp. M1 and Halorubrum sp. M5 but not in Halolamina sp. M3. Glutamic and succinic acid had no effect on carotenoid production, and even was negative for Halorubrum sp. M5. Growth was increased by glutamic and succinic acid on Haloarcula sp. M1 but not in the other strains. This work describes for first time the presence of halophilic archaea in the Santa Bárbara saltern and highlights the differences in the effect of carbon sources on the growth and carotenoid production of haloarchaea.

5.
Microorganisms ; 9(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924442

RESUMO

Anoxybacillus amylolyticus is a moderate thermophilic microorganism producing an exopolysaccharide and an extracellular α-amylase able to hydrolyze starch. The synthesis of several biomolecules is often regulated by a quorum sensing (QS) mechanism, a chemical cell-to-cell communication based on the production and diffusion of small molecules named "autoinducers", most of which belonging to the N-acyl homoserine lactones' (AHLs) family. There are few reports about this mechanism in extremophiles, in particular thermophiles. Here, we report the identification of a signal molecule, the N-butanoyl-homoserine lactone (C4-HSL), from the milieu of A. amylolyticus. Moreover, investigations performed by supplementing a known QS inhibitor, trans-cinnamaldehyde, or exogenous C4-HSL in the growth medium of A. amylolyticus suggested the involvement of QS signaling in the modulation of extracellular α-amylase activity. The data showed that the presence of the QS inhibitor trans-cinnamaldehyde in the medium decreased amylolytic activity, which, conversely, was increased by the effect of exogenous C4-HSL. Overall, these results represent the first evidence of the production of AHLs in thermophilic microorganisms, which could be responsible for a communication system regulating thermostable α-amylase activity.

6.
Microorganisms ; 9(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494462

RESUMO

Waste biomass coming from a local coffee company, which supplied burnt ground coffee after an incorrect roasting process, was employed as a starting material in the composting plant of the Experimental Station of the University of Naples Federico II at Castel Volturno (CE). The direct molecular characterization of compost using 13C-NMR spectra, which was acquired through cross-polarization magic-angle spinning, showed a hydrophobicity index of 2.7% and an alkyl/hydroxyalkyl index of 0.7%. Compost samples that were collected during the early "active thermophilic phase" (when the composting temperature was 63 °C) were analyzed for the prokaryotic community composition and activities. Two complementary approaches, i.e., genomic and predictive metabolic analysis of the 16S rRNA V3-V4 amplicon and culture-dependent analysis, were combined to identify the main microbial factors that characterized the composting process. The whole microbial community was dominated by Firmicutes. The predictive analysis of the metabolic functionality of the community highlighted the potential degradation of peptidoglycan and the ability of metal chelation, with both functions being extremely useful for the revitalization and fertilization of agricultural soils. Finally, three biotechnologically relevant Firmicutes members, i.e., Geobacillus thermodenitrificans subsp. calidus, Aeribacillus pallidus, and Ureibacillus terrenus (strains CAF1, CAF2, and CAF5, respectively) were isolated from the "active thermophilic phase" of the coffee composting. All strains were thermophiles growing at the optimal temperature of 60 °C. Our findings contribute to the current knowledge on thermophilic composting microbiology and valorize burnt ground coffee as waste material with biotechnological potentialities.

7.
Microorganisms ; 8(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842646

RESUMO

Thermokarst lakes are one of the most abundant types of microbial ecosystems in the circumpolar North. These shallow basins are formed by the thawing and collapse of ice-rich permafrost, with subsequent filling by snow and ice melt. Until now, permafrost thaw lakes have received little attention for isolation of microorganisms by culture-based analysis. The discovery of novel psychrophiles and their biomolecules makes these extreme environments suitable sources for the isolation of new strains, including for potential biotechnological applications. In this study, samples of bottom sediments were collected from three permafrost thaw lakes in subarctic Québec, Canada. Their diverse microbial communities were characterized by 16S rRNA gene amplicon analysis, and subsamples were cultured for the isolation of bacterial strains. Phenotypic and genetic characterization of the isolates revealed affinities to the genera Pseudomonas, Paenibacillus, Acinetobacter,Staphylococcus and Sphingomonas. The isolates were then evaluated for their production of extracellular enzymes and exopolymers. Enzymes of potential biotechnological interest included α and ß-glucosidase, α and ß-maltosidase, ß-xylosidase and cellobiohydrolase. One isolate, Pseudomonas extremaustralis strain 2ASCA, also showed the capability to produce, in the loosely bound cell fraction, a levan-type polysaccharide with a yield of 613 mg/L of culture, suggesting its suitability as a candidate for eco-sustainable alternatives to commercial polymers.

8.
3 Biotech ; 10(9): 395, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32832343

RESUMO

In this study, we firstly reported the production and the structural characterization of a novel hetero-exopolysaccharide namely EPS-K2 from the extremely halophilc Halomonas smyrnensis K2. Results revealed that EPS-K2 was mainly composed of three monosaccharides including mannose (66.69%), glucose (19.54%) and galactose (13.77%). EPS-K2 showed high thermostability with a degradation temperature around 260 °C, which could make it a suitable candidate for application in thermal processes. Moreover, EPS-K2 showed attractive functional properties. In fact, it exhibited potent antioxidant activity in a dose-dependent manner as assessed in analyses of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, iron chelating and DNA protection ability. Furthermore, EPS-K2 showed strong adhesion inhibition activity against Enterococcus faecalis (75.52 ± 3.35%) and Escherichia coli (61.95 ± 2.48%) at 1 g/l concentration, as well as a high biofilm disruption activity especially against E. coli (70.73 ± 2.78%), at 2 g/l concentration. According to its biotechnological properties, EPS-K2 could be exploited as functional ingredient in food, biomedicine, and pharmaceutical industries.

9.
Int J Biol Macromol ; 164: 95-104, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673722

RESUMO

Production of extracellular polysaccharides by halophilic Archaea and Bacteria has been widely reported and the members of the genus Halomonas have been identified as the most potential producers. In the present work, a novel exopolysaccharide (EPS-S6) produced by the extremely halotolerant newly isolated Halomonas elongata strain S6, was characterized. According to the HPAE-PAD results, EPS-S6 was mainly composed of glucosamine, mannose, rhamnose and glucose (1:0.9:0.7:0.3). EPS-S6 was highly negatively charged and its molecular weight was about 270 kDa. Studies on its functional properties showed that EPS-S6 had several potential features. It has noticeable antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH•) inhibition and DNA protection, good ability to inhibit and to disrupt pathogenic biofilms, excellent flocculation of kaolin suspension and interesting emulsifying properties at acidic, neutral and basic pH. Therefore, EPS-S6 could have potential biotechnological concern in several fields such as in food, cosmetic and environmental industries.


Assuntos
Halomonas/química , Polissacarídeos Bacterianos/isolamento & purificação , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Floculação , Peso Molecular , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Tolerância ao Sal , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Açúcares/análise , Termogravimetria
10.
Curr Microbiol ; 77(10): 3192-3200, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32725341

RESUMO

A new petroleum-degrading bacterium, designated strain GC2T, was isolated from Bozkus 1 petroleum station in Diyarbakir, located in the southeast of Turkey. Cells were Gram-negative staining, aerobic, coccoid-rods, non-motile, non-spore-forming. The bacterium was found to degrade 100% of n-alkanes ranging from C11 to C34 presented in the 1% crude oil after incubation of 7 days. The membrane phospholipids were 1,2 diacylglycero-3-phosphorylethanolamine (PEA), phosphatidylglycerol (PG), dipalmitoyl-sn-glycerol 1- phosphocholine (PC1), 1,2 dipalmitoyl-sn-glycero-3-phosphocholine monohydrate (PC3), cardiolipin also called diphosphatidylglycerol (CL) and l-α- phosphatidic acid, dipalmitoyl (AP); predominant respiratory ubiquinone was Q-8 and C16:0, C18:1ω9c and C16:1 were the major cellular fatty acids. The 16S rRNA sequence analysis revealed that the strain GC2T was a member of genus Acinetobacter and was most closely related to Acinetobacter lwoffii DSM 2403 T (99.79%), Acinetobacter pseudolwoffii ANC 5318 T (98.83%) and Acinetobacter harbinensis HITLi 7 T (98.14%). The rpoB and gyrB gene sequence analysis confirmed that the strain GC2T was a member of genus Acinetobacter and that the closest relative was Acinetobacter lwoffii DSM 2403 T (99.08% and 100% similarity, respectively). DNA-DNA hybridization values between GC2T and its closest relatives ranged from 65.6% (with A. lwoffii) to 5.1% (with A. venetianus). The whole genome sequence of strain GC2T was obtained. The DNA G + C content of this strain was determined to be 42.9 mol %. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain GC2T represents an independent genomospecies. On the basis of phenotypic characteristics, chemotaxonomic, phylogenetic data and DNA-DNA hybridization and whole genome analysis, we propose to assign strain GC2T as a new species of the genus Acinetobacter, for which the name Acinetobacter mesopotamicus sp. nov. is proposed. The type strain of this species is GC2T (DSM 26953 T = JCM 31073 T). The whole genome of strain GC2T has been deposited at DDBJ/ENA/GenBank under the accession JAALFF010000000.


Assuntos
Acinetobacter , Petróleo , Acinetobacter/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Turquia
11.
Appl Microbiol Biotechnol ; 104(7): 2923-2934, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32076778

RESUMO

Extracellular polymeric substances (EPSs) possess diversified ecological role, including the cell adhesion to surfaces and cell protection, and are highly involved in the interactions between the bacterial cells and the bulk environments. Interestingly, EPSs find valuable applications in the industrial field, due to their chemical versatility. In this context, Antarctic bacteria have not been given the attention they deserve as producers of EPS molecules and a very limited insight into their EPS production capabilities and biotechnological potential is available in literature to date. Antarctic EPS-producing bacteria are mainly psychrophiles deriving from the marine environments (generally sea ice and seawater) around the continent, whereas a unique thermophilic bacterium, namely Parageobacillus thermantarcticus strain M1, was isolated from geothermal soil of the crater of Mount Melbourne. This mini-review is aimed at showcasing the current knowledge on EPS-producing Antarctic bacteria and the chemical peculiarities of produced EPSs, highlighting their biotechnological potential and the yet unexplored treasure they represent for biodiscovery.


Assuntos
Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/fisiologia , Regiões Antárticas , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Biotecnologia , Ecossistema , Matriz Extracelular de Substâncias Poliméricas/classificação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Filogenia , Água do Mar/microbiologia , Temperatura
12.
Biomolecules ; 9(12)2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817563

RESUMO

Among plant polyphenols, lemon peels extract (LPE) from the residues of the industrial processing of lemon (Citruslimon) shows anti-proliferative properties in cancer cells and anticholinesterase activity. In this study, we analyze the anti-cancer properties of LPE on migration and invasiveness in MKN-28 and AGS human gastric cancer cell lines either in the absence or presence of the pro-inflammatory cytokine IL-6. We find that the pretreatment with non-cytotoxic concentrations (0.5-1 µg/ml of gallic acid equivalent) of LPE inhibits interleukin-6 (IL-6)-induced cell migration and invasiveness in MKN-28 and AGS cells, as analyzed by wound and matrigel assays. Pretreatment with LPE is able to prevent either IL-6-induced matrix metalloproteinases (MMP)-9/2 activity, as assessed by gel zymography, or mRNA and protein MMP-9/2 expression, as evaluated by qPCR and Western blotting analysis, respectively. These LPE effects are associated with an IL-6-dependent STAT3 signaling pathway in MKN-28 and AGS cells. Furthermore, LPE shows acetylcholinesterase inhibitory activity when assayed by the Ellman method. In conclusion, our results demonstrate that LPE reduces the invasiveness of gastric MKN-28 and AGS cancer cells through the reduction of IL-6-induced MMP-9/2 up-regulation. Therefore, these data suggest that LPE exerts a protective role against the metastatic process in gastric cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Extratos Vegetais/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Acetilcolinesterase/metabolismo , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citrus , Interações Ervas-Drogas , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/tratamento farmacológico , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/metabolismo
13.
Int J Biol Macromol ; 138: 658-666, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344416

RESUMO

Ten Halomonas strains were screened from different Tunisian hypersaline environments for the production of exopolysaccharides (EPS), characterized and identified basing on 16S rRNA gene sequencing. EPS production was therefore studied using two different culture media M1 (complex medium) and M2 (semi-complex medium). Selected isolates produced different EPS amounts ranging from 86 to 170 mg L-1 and 26 to 105 mg L-1 when grown on M1 and M2, respectively. The use of M1 encouraged stronger bacterial growth associated with greater EPS production compared to M2. Nevertheless, the highest EPS yield (YEPS/X) was observed for strains grown on M2. When cultivated on M1, all isolates produced EPS exhibiting almost the same monosaccharide profile with mannose, glucose and arabinose being the main monomers. However, the produced EPS on M2 were characterized by heterogeneous monosaccharide profiles among the different species, mostly consisting of glucomannan that could be a versatile material used for many further applications.


Assuntos
Meio Ambiente , Halomonas/fisiologia , Polissacarídeos Bacterianos/biossíntese , Solução Salina Hipertônica , Fenômenos Químicos , Meios de Cultura , Geografia , Halomonas/classificação , Monossacarídeos , Filogenia , Tunísia
14.
Appl Microbiol Biotechnol ; 102(11): 4937-4949, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29616312

RESUMO

Halophilic microorganisms are producers of a lot of new compounds whose properties suggest promising perspectives for their biotechnological exploration. Moderate halophilic bacterium Chromohalobacter canadensis 28 was isolated from Pomorie salterns as an extracellular polymer substance (EP) producer. The best carbon source for extracellular polymer production was found to be lactose, a sugar received as a by-product from the dairy industry. After optimization of the culture medium and physicochemical conditions for cultivation, polymer biosynthesis increased more than 2-fold. The highest level of extracellular polymer synthesis by C. canadensis 28 was observed in an unusually high NaCl concentration (15% w/v). Chemical analysis of the purified polymer revealed the presence of an exopolysaccharide (EPS) fraction (14.3% w/w) and protein fraction (72% w/w). HPLC analysis of the protein fraction showed the main presence of polyglutamic acid (PGA) (75.7% w/w). EPS fraction analysis revealed the following sugar composition (% w/w): glucosamine 36.7, glucose 32.3, rhamnose 25.4, xylose 1.7, and not identified sugar 3.9. The hydrogel formed by PGA and EPS fractions showed high swelling behavior, very good emulsifying and stabilizing properties, and good foaming ability. This is the first report for halophilic bacterium able to synthesize a polymer containing PGA fraction. The synthesized biopolymer shows an extremely high hydrophilicity, due to the simultaneous presence of PGA and EPS. The analysis of its functional properties and the presence of glucosamine in the highest proportion in EPS fraction clearly determine the potential of EP synthesized by C. canadensis 28 for application in the cosmetics industry.


Assuntos
Chromohalobacter/metabolismo , Polímeros/metabolismo , Biotecnologia , Meios de Cultura , Espaço Extracelular/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Polissacarídeos Bacterianos/análise , Polissacarídeos Bacterianos/química
15.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29180360

RESUMO

Four sponge-associated Antarctic bacteria (i.e., Winogradskyella sp. strains CAL384 and CAL396, Colwellia sp. strain GW185, and Shewanella sp. strain CAL606) were selected for the highly mucous appearance of their colonies on agar plates. The production of extracellular polymeric substances (EPSs) was enhanced by a step-by-step approach, varying the carbon source, substrate and NaCl concentrations, temperature, and pH. The EPSs produced under optimal conditions were chemically characterized, resulting in a moderate carbohydrate content (range, 15 to 28%) and the presence of proteins (range, 3 to 24%) and uronic acids (range, 3.2 to 11.9%). Chemical hydrolysis of the carbohydrate portion revealed galactose, glucose, galactosamine, and mannose as the principal constituents. The potential biotechnological applications of the EPSs were also investigated. The high protein content in the EPSs from Winogradskyella sp. CAL384 was probably responsible for the excellent emulsifying activity toward tested hydrocarbons, with a stable emulsification index (E24) higher than those recorded for synthetic surfactants. All the EPSs tested in this work improved the freeze-thaw survival ratio of the isolates, suggesting that they may be exploited as cryoprotection agents. The addition of a sugar in the culture medium, by stimulating EPS production, also allowed isolates to grow in the presence of higher concentrations of mercury and cadmium. This finding was probably dependent on the presence of uronic acids and sulfate groups, which can act as ligands for cations, in the extracted EPSs.IMPORTANCE To date, biological matrices have never been employed for the investigation of EPS production by Antarctic psychrotolerant marine bacteria. The biotechnological potential of extracellular polymeric substances produced by Antarctic bacteria is very broad and comprises many advantages, due to their biodegradability, high selectivity, and specific action compared to synthetic molecules. Here, several interesting EPS properties have been highlighted, such as emulsifying activity, cryoprotection, biofilm formation, and heavy metal chelation, suggesting their potential applications in cosmetic, environmental, and food biotechnological fields as valid alternatives to the commercial polymers currently used.


Assuntos
Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Regiões Antárticas , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes , Biotecnologia/métodos , Cádmio/farmacologia , Carboidratos/análise , Matriz Extracelular de Substâncias Poliméricas/efeitos dos fármacos , Hidrocarbonetos/metabolismo , Mercúrio/farmacologia , Proteínas/análise , RNA Ribossômico 16S , Açúcares/farmacologia , Tensoativos , Temperatura , Ácidos Urônicos/análise
16.
Int J Syst Evol Microbiol ; 67(11): 4830-4835, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28984237

RESUMO

A Gram-stain-positive, aerobic, endospore-forming, thermophilic bacterium, strain N.8T, was isolated from the curing step of an olive mill pomace compost sample, collected at the Composting Experimental Centre (CESCO, Salerno, Italy). Strain N.8T, based on 16S rRNA gene sequence similarities, was most closely related to Aeribacillus pallidus strain H12T (=DSM 3670T) (99.8 % similarity value) with a 25 % DNA-DNA relatedness value. Cells were rod-shaped, non-motile and grew optimally at 60 °C and pH 9.0, forming cream colonies. Strain N.8 was able to grow on medium containing up to 9.0 % (w/v) NaCl with an optimum at 6.0 % (w/v) NaCl. The cellular membrane contained MK-7, and C16 : 0 (48.4 %), iso-C17 : 0 (19.4 %) and anteiso-C17 : 0 (14.6 %) were the major cellular fatty acids. The DNA G+C content was 40.5 mol%. Based on phenotypic characteristics, 16S rRNA gene sequences, DNA-DNA hybridization values and chemotaxonomic characteristics, strain N.8T represents a novel species of the genus Aeribacillus, for which the name Aeribacillus composti sp. nov. is proposed. The type strain is N.8T (=KCTC 33824T=JCM 31580T).


Assuntos
Bacillaceae/classificação , Compostagem , Olea/microbiologia , Filogenia , Bacillaceae/genética , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Itália , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
17.
Microorganisms ; 5(2)2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28509857

RESUMO

Extreme marine environments have been the subject of many studies and scientific publications. For many years, these environmental niches, which are characterized by high or low temperatures, high-pressure, low pH, high salt concentrations and also two or more extreme parameters in combination, have been thought to be incompatible to any life forms. Thanks to new technologies such as metagenomics, it is now possible to detect life in most extreme environments. Starting from the discovery of deep sea hydrothermal vents up to the study of marine biodiversity, new microorganisms have been identified, and their potential uses in several applied fields have been outlined. Thermophile, halophile, alkalophile, psychrophile, piezophile and polyextremophile microorganisms have been isolated from these marine environments; they proliferate thanks to adaptation strategies involving diverse cellular metabolic mechanisms. Therefore, a vast number of new biomolecules such as enzymes, polymers and osmolytes from the inhabitant microbial community of the sea have been studied, and there is a growing interest in the potential returns of several industrial production processes concerning the pharmaceutical, medical, environmental and food fields.

18.
Bioresour Technol ; 222: 355-360, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27741473

RESUMO

In the present work the recently isolated strain Basfia succiniciproducens BPP7 was evaluated for the production of succinic acid up to the pilot fermentation scale in separate hydrolysis and fermentation experiments on Arundo donax, a non-food dedicated energy crop. An average concentration of about 17g/L of succinic acid and a yield on consumed sugars of 0.75mol/mol were obtained demonstrating strain potential for further process improvement. Small scale experiments indicated that the concentration of acetic acid in the medium is crucial to improve productivity; on the other hand, interestingly, short-term (24h) adaptation to higher acetic acid concentrations, and strain recovery, were also observed.


Assuntos
Microbiologia Industrial/métodos , Pasteurellaceae/metabolismo , Poaceae/química , Ácido Succínico/metabolismo , Ácido Acético , Anaerobiose , Meios de Cultura/química , Fermentação , Hidrólise , Projetos Piloto
19.
Int J Syst Evol Microbiol ; 66(3): 1554-1560, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813578

RESUMO

A Gram-stain-positive, non-endospore-forming, haloalkaliphilic actinobacterium, strain CK5T, was isolated from a soil sample, collected at Cape King (Antarctica), and its taxonomic position was investigated by using a polyphasic approach. Cells were cocci with orange pigmentation, non-motile and grew optimally at 25 °C and pH 9.0-9.5 in the presence of 2 % (w/v) NaCl. Cellular membrane contained MK-7 (72 %) and MK-8 (28 %), and anteiso-C15 : 0 (64.8 %), iso-C16 : 0 (13.3 %), n-C17 : 0 (9.9 %), n-C16 : 0 (4.0 %), n-C14 : 0 (3.7 %) as major cellular fatty acids. The DNA G+C content was 64.8 mol%. Strain CK5T, based on the 16S rRNA gene sequence similarity, was most closely related to Nesterenkonia jeotgali JG-241T (99.5 %), Nesterenkonia sandarakina YIM 70009T (99.4 %), Nesterenkonia lutea YIM 70081T (99.4 %), Nesterenkonia halotolerans YIM 70084T (99.3 %), Nesterenkonia xinjiangensis YIM 70097T (97.2 %), Nesterenkonia flava CAAS 251T (97.1 %) and Nesterekonia aethiopica CCUG 48939T (97.1 %). Strain CK5T revealed 31 % DNA-DNA relatedness with respect to N. sandarakina DSM 15664T, 29 % with respect to N. jeotgali DSM 19081T, 10 % with respect to N. lutea DSM 15666T and 1 % with respect to N. halotolerans, DSM 15474T, N. xinjiangensis DSM 15475T, N. aethiopica DSM 17733T and N. flava DSM 19422T. On the basis of 16S rRNA gene sequences, DNA-DNA hybridization and chemotaxonomic characteristics, strain CK5T represents a novel species of the genus Nesterenkonia, for which the name Nesterenkonia aurantiaca sp. nov. is proposed. The type strain is CK5T ( = DSM 27373T = JCM 19723T).

20.
AMB Express ; 4: 55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024928

RESUMO

Polysaccharidases from extremophiles are remarkable for specific action, resistance to different reaction conditions and other biotechnologically interesting features. In this article the action of crude extracts of thermophilic microorganisms (Thermotoga neapolitana, Geobacillus thermantarcticus and Thermoanaerobacterium thermostercoris) is studied using as substrate hemicellulose from one of the most interesting biomass crops, the giant reed (Arundo donax L.). This biomass can be cultivated without competition and a huge amount of rhizomes remains in the soil at the end of cropping cycle (10-15 years) representing a further source of useful molecules. Optimization of the procedure for preparation of the hemicellulose fraction from rhizomes of Arundo donax, is studied. Polysaccharidases from crude extracts of thermophilic microorganisms revealed to be suitable for total degradative action and/or production of small useful oligosaccharides from hemicelluloses from A. donax. Xylobiose and interesting tetra- and pentasaccharide are obtained by enzymatic action in different conditions. Convenient amount of raw material was processed per mg of crude enzymes. Raw hemicelluloses and pretreated material show antioxidant activity unlike isolated tetra- and pentasaccharide. The body of results suggest that rhizomes represent a useful raw material for the production of valuable industrial products, thus allowing to increase the economic efficiency of A. donax cultivation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA