Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 239: 124780, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31726528

RESUMO

Among several other eutrophication management tools, Phoslock®, a lanthanum modified bentonite (LMB) clay, is now frequently used. Concerns have been raised as to whether exposure to Phoslock®-treated water may lead to lanthanum accumulation/toxicity in both animals and humans. In the present experimental study, rats were administered lanthanum orally as either lanthanum carbonate, lanthanum chloride or Phoslock® at doses of either 0.5 or 17 mg/L during 10 weeks. Controls received vehicle. The gastrointestinal absorption and tissue distribution of lanthanum was investigated. Extremely strict measures were implemented to avoid cross-contamination between different tissues or animals. Results showed no differences in gastrointestinal absorption between the different compounds under study as reflected by the serum lanthanum levels and concentrations found in the brain, bone, heart, spleen, lung, kidney and testes. At sacrifice, significant but equally increased lanthanum concentrations versus vehicle were observed in the liver for the highest dose of each compound which however, remained several orders of magnitude below the liver lanthanum concentration previously measured after long-term therapeutic administration of lanthanum carbonate and for which no hepatotoxicity was noticed in humans. In conclusion, (i) the use of LMB does not pose a toxicity risk (ii) gastrointestinal absorption of lanthanum is minimal and independent on the type of the compound, (iii) with exception of the liver, no significant increase in lanthanum levels is observed in the various organs under study, (iv) based on previous studies, the slightly increased liver lanthanum levels observed in a worst case scenario do not hold any risk of hepatotoxicity.


Assuntos
Bentonita/toxicidade , Lantânio/farmacocinética , Purificação da Água/métodos , Animais , Eutrofização , Lantânio/toxicidade , Fígado/química , Fósforo , Ratos
2.
Chemosphere ; 220: 286-299, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30590295

RESUMO

The use of geo-engineering materials to manage phosphorus in lakes has increased in recent years with aluminium and lanthanum based materials being most commonly applied. Hence the potential impact of the use of these compounds on human health is receiving growing interest. This review seeks to understand, evaluate and compare potential unintended consequences on human health and ecotoxicological risks associated with the use of lanthanum- and aluminium-based materials to modify chemical and ecological conditions in water bodies. In addition to their therapeutic use for the reduction of intestinal phosphate absorption in patients with impaired renal function, the phosphate binding capacity of aluminium and lanthanum also led to the development of materials used for water treatment. Although lanthanum and aluminium share physicochemical similarities and have many common applications, their uptake and kinetics within the human body and living organisms importantly differ from each other which is reflected in a different toxicity profile. Whilst a causal role in the development of neurological pathologies, skeletal lesions, hematopoietic disorders and respiratory effects has unequivocally been demonstrated with increased exposure to aluminium, studies until now have failed to find such a clear association after exposure to lanthanum although caution is warranted. Our review indicates that lanthanum and aluminium have a distinctly different profile with respect to their potential effects on human health. Regular monitoring of both aluminium and lanthanum concentrations in lanthanum-/aluminium-treated water by the responsible authorities is recommended to avoid acute accidental or chronic low level accumulation.


Assuntos
Recuperação e Remediação Ambiental/métodos , Fósforo/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Alumínio/metabolismo , Água Doce , Humanos , Lantânio/metabolismo , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo
3.
Water Res ; 97: 162-74, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26706125

RESUMO

This paper reviews the scientific knowledge on the use of a lanthanum modified bentonite (LMB) to manage eutrophication in surface water. The LMB has been applied in around 200 environments worldwide and it has undergone extensive testing at laboratory, mesocosm, and whole lake scales. The available data underline a high efficiency for phosphorus binding. This efficiency can be limited by the presence of humic substances and competing oxyanions. Lanthanum concentrations detected during a LMB application are generally below acute toxicological threshold of different organisms, except in low alkalinity waters. To date there are no indications for long-term negative effects on LMB treated ecosystems, but issues related to La accumulation, increase of suspended solids and drastic resources depletion still need to be explored, in particular for sediment dwelling organisms. Application of LMB in saline waters need a careful risk evaluation due to potential lanthanum release.


Assuntos
Bentonita/química , Lantânio/química , Eutrofização , Lagos , Fósforo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA