Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infection ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326526

RESUMO

PURPOSE: Anti SARS-CoV-2 vaccination initially showed high effectiveness in preventing COVID-19. However, after the surge of variants of concern, the effectiveness dropped. Several studies investigated if this was related to the decrease of the humoral response over time; however, this issue is still unclear. The aim of this study was to understand whether SARS-CoV-2 anti-S IgG levels can be used to predict breakthrough infection risk and define the timing for further booster doses administration. METHOD: Within the framework of the ORCHESTRA Project, over 20,000 health workers from 11 European centers were enrolled since December 2020. We performed two Cox proportional hazards survival analyses regarding pre-Omicron (from January to July 2021) and Omicron (December 2021-May 2022) periods. The serological response was classified as high (above the 75th percentile), medium (25th-75th), or low (< 25th). RESULTS: Seventy-four (0.33%) and 2122 (20%) health workers were infected during the first and second periods, respectively. Both Cox analyses showed that having high anti-S titer was linked to a significantly lower risk of infection as compared to having medium serological response [HR of high vs medium anti-S titer = 0.27 (95% CI 0.11-0.66) during the first phase, HR = 0.76 (95% CI 0.62-0.93) during the second phase]. CONCLUSION: Vaccine effectiveness wanes significantly after new variants surge, making anti-S titer unsuitable to predict optimal timing for further booster dose administration. Studies on other immunological indicators, such as cellular immunity, are therefore needed to better understand the mechanisms and duration of protection against breakthrough infection risk.

2.
Br J Haematol ; 198(2): 257-266, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35577507

RESUMO

To slow down the coronavirus disease 2019 (COVID-19) pandemic an unequalled vaccination campaign was initiated. Despite proven efficacy and safety, a rare but potentially fatal complication of adenoviral-vector vaccines, called vaccine-induced immune thrombotic thrombocytopenia (VITT), has emerged the pathogenesis of which seems to be related to the development of platelet-activating anti-platelet factor 4 (PF4) antibodies. While a few studies have evaluated the incidence of anti-PF4 positivity in anti-severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine recipients, to date no studies have assessed whether an antiplatelet immunological response develops and if this associates with platelet and blood clotting activation. We carried out a prospective study in healthy subjects who received the first dose of ChAdOx1 or Ad26.COV2.S or BNT162b2 vaccines to evaluate platelet-specific and non-specific immune response and in vivo platelet activation and blood clotting activation. Individuals receiving ChAdOx1 and, less so, Ad26.COV2.S developed with high frequency auto- or alloantiplatelet antibodies, increased circulating platelet-derived microvesicles and soluble P-selectin associated with mild blood clotting activation. Our study shows that an immunological reaction involving platelets is not uncommon in individuals receiving anti-SARS-CoV-2 vaccination, especially after ChAdOx1 and Ad26.COV2.S, and that it associates with in vivo platelet and blood clotting activation.


Assuntos
Autoimunidade , Vacinas contra COVID-19 , COVID-19 , Ativação Plaquetária , Trombocitopenia , Ad26COVS1 , Adenoviridae , Vacina BNT162 , Coagulação Sanguínea , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19 , Humanos , Fator Plaquetário 4 , Estudos Prospectivos , SARS-CoV-2 , Trombocitopenia/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA