Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cell Rep ; 16(3): 731-43, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27373162

RESUMO

The effect of gut microbiota on obesity and insulin resistance is now recognized, but the underlying host-dependent mechanisms remain poorly undefined. We find that tissue inhibitor of metalloproteinase 3 knockout (Timp3(-/-)) mice fed a high-fat diet exhibit gut microbiota dysbiosis, an increase in branched chain and aromatic (BCAA) metabolites, liver steatosis, and an increase in circulating soluble IL-6 receptors (sIL6Rs). sIL6Rs can then activate inflammatory cells, such as CD11c(+) cells, which drive metabolic inflammation. Depleting the microbiota through antibiotic treatment significantly improves glucose tolerance, hepatic steatosis, and systemic inflammation, and neutralizing sIL6R signaling reduces inflammation, but only mildly impacts glucose tolerance. Collectively, our results suggest that gut microbiota is the primary driver of the observed metabolic dysfunction, which is mediated, in part, through IL-6 signaling. Our findings also identify an important role for Timp3 in mediating the effect of the microbiota in metabolic diseases.


Assuntos
Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Microbiota/fisiologia , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Disbiose/patologia , Fígado Gorduroso/microbiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/patologia , Glucose/metabolismo , Teste de Tolerância a Glucose/métodos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Resistência à Insulina/fisiologia , Interleucina-6/metabolismo , Fígado/metabolismo , Fígado/microbiologia , Fígado/patologia , Doenças Metabólicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Receptores de Interleucina-6/metabolismo , Transdução de Sinais/fisiologia
3.
Diabetes ; 63(6): 2086-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24430438

RESUMO

Obesity elicits immune cell infiltration of adipose tissue provoking chronic low-grade inflammation. Regulatory T cells (Tregs) are specifically reduced in adipose tissue of obese animals. Since interleukin (IL)-21 plays an important role in inducing and maintaining immune-mediated chronic inflammatory processes and negatively regulates Treg differentiation/activity, we hypothesized that it could play a role in obesity-induced insulin resistance. We found IL-21 and IL-21R mRNA expression upregulated in adipose tissue of high-fat diet (HFD) wild-type (WT) mice and in stromal vascular fraction from human obese subjects in parallel to macrophage and inflammatory markers. Interestingly, a larger infiltration of Treg cells was seen in the adipose tissue of IL-21 knockout (KO) mice compared with WT animals fed both normal diet and HFD. In a context of diet-induced obesity, IL-21 KO mice, compared with WT animals, exhibited lower body weight, improved insulin sensitivity, and decreased adipose and hepatic inflammation. This metabolic phenotype is accompanied by a higher induction of interferon regulatory factor 4 (IRF4), a transcriptional regulator of fasting lipolysis in adipose tissue. Our data suggest that IL-21 exerts negative regulation on IRF4 and Treg activity, developing and maintaining adipose tissue inflammation in the obesity state.


Assuntos
Tecido Adiposo/metabolismo , Inflamação/metabolismo , Resistência à Insulina/imunologia , Fatores Reguladores de Interferon/metabolismo , Interleucinas/metabolismo , Lipólise , Obesidade/metabolismo , Células 3T3-L1/metabolismo , Animais , Western Blotting , Células Cultivadas , Citometria de Fluxo , Inflamação/imunologia , Interleucinas/genética , Lipólise/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/imunologia , RNA Mensageiro/metabolismo , Receptores de Interleucina-21/metabolismo , Linfócitos T Reguladores , Regulação para Cima
4.
Acta Diabetol ; 50(6): 965-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23797704

RESUMO

Diabetic nephropathy (DN) is the major cause of chronic kidney disease in developed countries and contributes significantly to increased morbidity and mortality among diabetic patients. Morphologically, DN is characterized by tubulo-interstitial fibrosis, thickening of the glomerular basement membrane and mesangial expansion mainly due to accumulation of extracellular matrix (ECM). ECM turnover is regulated by metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs) activities. In diabetic conditions, TIMP3 expression in kidney is strongly reduced, but the causes of this reduction are still unknown. The aim of this study was to elucidate at least one of these mechanisms which relies on differential expression of TIMP3-targeting microRNAs (miRs) in a hyperglycemic environment either in vitro (MES13 cell line) or in vivo (mouse kidney and human biopsies). Among the TIMP3-targeting miRs, miR-21 and miR-221 were significantly upregulated in kidneys from diabetic mice compared to control littermates, and in a mesangial cell line grown in high glucose conditions. In human samples, only miR-21 expression was increased in kidney biopsies from diabetic patients compared to healthy controls. The expression of miR-217, which targets TIMP3 indirectly through downregulation of SirT1, was also increased in diabetic kidney and MES13 cell line. In agreement with these result, SirT1 expression was reduced in mouse and human diabetic kidneys as well as in MES13 mesangial cell line. TIMP3 deficiency has recently emerged as a hallmark of DN in mouse and human. In this study, we demonstrated that this reduction is due, at least in part, to increased expression of certain TIMP3-targeting miRs in diabetic kidneys compared to healthy controls. Unveiling the post-transcriptional mechanisms responsible for TIMP3 downregulation in hyperglycemic conditions may orient toward the use of this protein as a possible therapeutic target in DN.


Assuntos
Nefropatias Diabéticas/genética , Regulação da Expressão Gênica , MicroRNAs/fisiologia , Inibidor Tecidual de Metaloproteinase-3/genética , Animais , Células Cultivadas , Nefropatias Diabéticas/patologia , Perfilação da Expressão Gênica , Humanos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor Tecidual de Metaloproteinase-3/metabolismo
5.
EMBO Mol Med ; 5(3): 441-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23401241

RESUMO

ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3(-/-) mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3(-/-) mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3(-/-) mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Fatores de Transcrição Forkhead/metabolismo , Glomérulos Renais/metabolismo , Fator de Transcrição STAT1/metabolismo , Inibidor Tecidual de Metaloproteinase-3/deficiência , Albuminúria/etiologia , Albuminúria/metabolismo , Animais , Autofagia , Biópsia , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Glomérulos Renais/patologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Knockout , Cultura Primária de Células , Interferência de RNA , Fator de Transcrição STAT1/genética , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-3/genética , Transfecção
6.
Atherosclerosis ; 228(1): 12-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23384719

RESUMO

The TNF-alpha Converting Enzyme (TACE), also called ADAM17 (A Disintegrin and A Metalloproteinase 17) is a type I transmembrane metalloproteinase involved in the shedding of the extracellular domain of several transmembrane proteins such as cytokines, growth factors, receptors and adhesion molecules. Some of these proteolytic events are part of cleavage cascades known as Regulated Intramembrane Proteolysis and lead to intracellular signaling. Evidence is provided that ADAM17 plays a role in atherosclerosis, in adipose tissue metabolism, insulin resistance and diabetes. The multitude of substrates cleaved by ADAM17 makes this enzyme an attractive candidate to study its role in inflammatory disorders. This review is focused on effects of ADAM17 in major metabolic tissues.


Assuntos
Proteínas ADAM/imunologia , Aterosclerose/imunologia , Resistência à Insulina/imunologia , Obesidade/imunologia , Vasculite/imunologia , Proteínas ADAM/metabolismo , Proteína ADAM17 , Aterosclerose/metabolismo , Humanos , Obesidade/metabolismo , Vasculite/metabolismo
7.
Hepatology ; 51(1): 103-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19877183

RESUMO

UNLABELLED: Tumor necrosis factor alpha-converting enzyme (TACE, also known as ADAM17) was recently involved in the pathogenesis of insulin resistance. We observed that TACE activity was significantly higher in livers of mice fed a high-fat diet (HFD) for 1 month, and this activity was increased in liver > white adipose tissue > muscle after 5 months compared with chow control. In mouse hepatocytes, C(2)C(12) myocytes, and 3T3F442A adipocytes, TACE activity was triggered by palmitic acid, lipolysaccharide, high glucose, and high insulin. TACE overexpression significantly impaired insulin-dependent phosphorylation of AKT, GSK3, and FoxO1 in mouse hepatocytes. To test the role of TACE activation in vivo, we used tissue inhibitor of metalloproteinase 3 (Timp3) null mice, because Timp3 is the specific inhibitor of TACE and Timp3(-/-) mice have higher TACE activity compared with wild-type (WT) mice. Timp3(-/-) mice fed a HFD for 5 months are glucose-intolerant and insulin-resistant; they showed macrovesicular steatosis and ballooning degeneration compared with WT mice, which presented only microvesicular steatosis. Shotgun proteomics analysis revealed that Timp3(-/-) liver showed a significant differential expression of 38 proteins, including lower levels of adenosine kinase, methionine adenosysltransferase I/III, and glycine N-methyltransferase and higher levels of liver fatty acid-binding protein 1. These changes in protein levels were also observed in hepatocytes infected with adenovirus encoding TACE. All these proteins play a role in fatty acid uptake, triglyceride synthesis, and methionine metabolism, providing a molecular explanation for the increased hepatosteatosis observed in Timp3(-/-) compared with WT mice. CONCLUSION: We have identified novel mechanisms, governed by the TACE-Timp3 interaction, involved in the determination of insulin resistance and liver steatosis during overfeeding in mice.


Assuntos
Proteínas ADAM/metabolismo , Fígado Gorduroso/induzido quimicamente , Resistência à Insulina/fisiologia , Inibidor Tecidual de Metaloproteinase-3/fisiologia , Proteína ADAM17 , Animais , Gorduras na Dieta/administração & dosagem , Camundongos , Proteômica , Inibidor Tecidual de Metaloproteinase-3/deficiência
8.
Gastroenterology ; 136(2): 663-72.e4, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19027012

RESUMO

BACKGROUND & AIMS: Obesity-driven, low-grade inflammation affects systemic metabolic function and can lead to insulin resistance, hepatic steatosis, and atherosclerosis. Decreased expression of tissue inhibitor of metalloproteinase 3 (Timp3) is a catalyst for insulin resistance and inflammation. Timp3 is a natural inhibitor of matrix metalloproteinases, tumor necrosis factor-alpha-converting enzyme (TACE), and vascular endothelial growth factor receptor 2, and therefore could affect signaling processes involved in inflammation and angiogenesis. METHODS: We assessed the effects of Timp3 on inflammation, tissue remodeling, and intermediary metabolism in mice, under conditions of environmental stress (high-fat diet), genetic predisposition to insulin resistance (insulin receptor [Insr] haploinsufficiency), and varying levels of inflammation (Timp3 or Tace deficiencies). Metabolic tests, immunohistochemistry, real-time polymerase chain reaction, and immunoblotting were used to compare data from wild-type, Insr(+/-), Timp3(-/-), Insr(+/-)Timp3(-/-), and Insr(+/-)Tace(+/-) mice placed on high-fat diets for 10 weeks. RESULTS: Insr(+/-)Timp3(-/-) mice showed a higher degree of adipose and hepatic inflammation compared with wild-type, Insr(+/-), Timp3(-/-), and Insr(+/-)Tace(+/-) mice. In particular, the Insr(+/-)Timp3(-/-) mice developed macrovesicular steatosis and features of severe nonalcoholic fatty liver disease, including lobular and periportal inflammation, hepatocellular ballooning, and perisinusoidal fibrosis. These were associated with increased expression of inflammatory and steatosis markers, including suppressor of cytokine signaling 3 and stearoyl CoA desaturase 1, in both liver and adipose tissue. Interestingly, Insr(+/-)Tace(+/-) mice had a nearly opposite phenotype. CONCLUSIONS: Timp3, possibly through its regulation of TACE, appears to have a role in the pathogenesis of fatty liver disease associated with obesity.


Assuntos
Fígado Gorduroso/genética , Paniculite/genética , Inibidor Tecidual de Metaloproteinase-3/genética , Proteínas ADAM/deficiência , Proteínas ADAM/metabolismo , Proteína ADAM17 , Tecido Adiposo Branco/metabolismo , Animais , Gorduras na Dieta/metabolismo , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Predisposição Genética para Doença/genética , Resistência à Insulina/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Paniculite/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/metabolismo
9.
Diabetes ; 56(10): 2541-6, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17646208

RESUMO

OBJECTIVE: Tumor necrosis factor (TNF)-alpha is known to affect insulin sensitivity, glucose, and lipid metabolism through alternative and redundant mechanisms at both translational and post-translational levels. TNF-alpha exerts its paracrine effects once the membrane-anchored form is shed and released from the cell membrane. TNF-alpha cleavage is regulated by TNF-alpha converting enzyme (TACE), which regulates the function of several transmembrane proteins, such as interleukin-6 receptor and epidermal growth factor receptor ligands. The role of TACE in high-fat diet (HFD)-induced obesity and its metabolic complications is unknown. RESEARCH DESIGN AND METHODS: To gain insights into the role of TACE in metabolic disorders, we used Tace(+/-) mice fed a standard or high-fat diet for 16 weeks. RESULTS: We observed that Tace(+/-) mice are relatively protected from obesity and insulin resistance compared with wild-type littermates. When fed an HFD, wild-type mice exhibited visceral obesity, increased free fatty acid and monocyte chemoattractant protein (MCP)1 levels, hypoadiponectinemia, glucose intolerance, and insulin resistance compared with Tace(+/-) mice. Interestingly, Tace(+/-) mice exhibited increased uncoupling protein-1 and GLUT4 expression in white adipose tissue. CONCLUSIONS: Our results suggest that modulation of TACE activity is a new pathway to be investigated for development of agents acting against obesity and its metabolic complications.


Assuntos
Proteínas ADAM/genética , Tecido Adiposo/fisiologia , Diabetes Mellitus/prevenção & controle , Resistência à Insulina , Obesidade/prevenção & controle , Proteínas ADAM/deficiência , Proteína ADAM17 , Animais , Gorduras na Dieta/farmacologia , Triagem de Portadores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação
10.
Oncogene ; 22(27): 4221-34, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12833145

RESUMO

The ErbB-2 interacting protein receptor-associated late transducer (RALT) was previously identified as a feedback inhibitor of ErbB-2 mitogenic signals. We now report that RALT binds to ligand-activated epidermal growth factor receptor (EGFR), ErbB-4 and ErbB-2.ErbB-3 dimers. When ectopically expressed in 32D cells reconstituted with the above ErbB receptor tyrosine kinases (RTKs) RALT behaved as a pan-ErbB inhibitor. Importantly, when tested in either cell proliferation assays or biochemical experiments measuring activation of ERK and AKT, RALT affected the signalling activity of distinct ErbB dimers with different relative potencies. RALT deltaEBR, a mutant unable to bind to ErbB RTKs, did not inhibit ErbB-dependent activation of ERK and AKT, consistent with RALT exerting its suppressive activity towards these pathways at a receptor-proximal level. Remarkably, RALT deltaEBR retained the ability to suppress largely the proliferative activity of ErbB-2.ErbB-3 dimers over a wide range of ligand concentrations, indicating that RALT can intercept ErbB-2.ErbB-3 mitogenic signals also at a receptor-distal level. A suppressive function of RALT deltaEBR towards the mitogenic activity of EGFR and ErbB-4 was detected at low levels of receptor occupancy, but was completely overcome by saturating concentrations of ligand. We propose that quantitative and qualitative aspects of RALT signalling concur in defining identity, strength and duration of signals generated by the ErbB network.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Receptor ErbB-2/metabolismo , Transdução de Sinais , Células 3T3 , Animais , Divisão Celular , Linhagem Celular , DNA/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Glutationa Transferase/metabolismo , Imunoquímica , Imuno-Histoquímica , Ligantes , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Genéticos , Mutação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-4 , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
11.
Genome Res ; 13(6B): 1376-88, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12819136

RESUMO

Apoptosis (programmed cell death) plays important roles in many facets of normal mammalian physiology. Host-pathogen interactions have provided evolutionary pressure for apoptosis as a defense mechanism against viruses and microbes, sometimes linking apoptosis mechanisms with inflammatory responses through NFkappaB induction. Proteins involved in apoptosis and NFkappaB induction commonly contain evolutionarily conserved domains that can serve as signatures for identification by bioinformatics methods. Using a combination of public (NCBI) and private (RIKEN) databases, we compared the repertoire of apoptosis and NFkappaB-inducing genes in humans and mice from cDNA/EST/genomic data, focusing on the following domain families: (1) Caspase proteases; (2) Caspase recruitment domains (CARD); (3) Death Domains (DD); (4) Death Effector Domains (DED); (5) BIR domains of Inhibitor of Apoptosis Proteins (IAPs); (6) Bcl-2 homology (BH) domains of Bcl-2 family proteins; (7) Tumor Necrosis Factor (TNF)-family ligands; (8) TNF receptors (TNFR); (9) TIR domains; (10) PAAD (PYRIN; PYD, DAPIN); (11) nucleotide-binding NACHT domains; (12) TRAFs; (13) Hsp70-binding BAG domains; (14) endonuclease-associated CIDE domains; and (15) miscellaneous additional proteins. After excluding redundancy due to alternative splice forms, sequencing errors, and other considerations, we identified cDNAs derived from a total of 227 human genes among these domain families. Orthologous murine genes were found for 219 (96%); in addition, several unique murine genes were found, which appear not to have human orthologs. This mismatch may be due to the still fragmentary information about the mouse genome or genuine differences between mouse and human repertoires of apoptotic genes. With this caveat, we discuss similarities and differences in human and murine genes from these domain families.


Assuntos
Apoptose/genética , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Caspases/química , Caspases/genética , Caspases/fisiologia , Fragmentação do DNA/genética , Fragmentação do DNA/fisiologia , Bases de Dados Genéticas/estatística & dados numéricos , Guanilato Quinases , Humanos , Quinase I-kappa B , Proteínas I-kappa B/genética , Proteínas I-kappa B/fisiologia , Inflamação/enzimologia , Inflamação/genética , Proteínas Inibidoras de Apoptose , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Proteínas/química , Proteínas/genética , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/fisiologia , Homologia de Sequência do Ácido Nucleico , Receptores Toll-Like , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/fisiologia
12.
J Exp Med ; 196(12): 1605-15, 2002 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-12486103

RESUMO

Apoptosis-associated speck-like protein containing a Caspase recruitment domain (ASC) belongs to a large family of proteins that contain a Pyrin, AIM, ASC, and death domain-like (PAAD) domain (also known as PYRIN, DAPIN, Pyk). Recent data have suggested that ASC functions as an adaptor protein linking various PAAD-family proteins to pathways involved in nuclear factor (NF)-kappaB and pro-Caspase-1 activation. We present evidence here that the role of ASC in modulating NF-kappaB activation pathways is much broader than previously suspected, as it can either inhibit or activate NF-kappaB, depending on cellular context. While coexpression of ASC with certain PAAD-family proteins such as Pyrin and Cryopyrin increases NF-kappaB activity, ASC has an inhibitory influence on NF-kappaB activation by various proinflammatory stimuli, including tumor necrosis factor (TNF)alpha, interleukin 1beta, and lipopolysaccharide (LPS). Elevations in ASC protein levels or of the PAAD domain of ASC suppressed activation of IkappaB kinases in cells exposed to pro-inflammatory stimuli. Conversely, reducing endogenous levels of ASC using siRNA enhanced TNF- and LPS-induced degradation of the IKK substrate, IkappaBalpha. Our findings suggest that ASC modulates diverse NF-kappaB induction pathways by acting upon the IKK complex, implying a broad role for this and similar proteins containing PAAD domains in regulation of inflammatory responses.


Assuntos
Proteínas do Citoesqueleto/metabolismo , NF-kappa B/metabolismo , Sítios de Ligação , Proteínas Adaptadoras de Sinalização CARD , Linhagem Celular , Proteínas do Citoesqueleto/genética , Genes Reporter , Humanos , Quinase I-kappa B , Substâncias Macromoleculares , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator 1 Associado a Receptor de TNF , Fator de Necrose Tumoral alfa/metabolismo
13.
J Biol Chem ; 277(38): 35333-40, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12093792

RESUMO

PAAD domains are found in diverse proteins of unknown function and are structurally related to a superfamily of protein interaction modules that includes death domains, death effector domains, and Caspase activation and recruitment domains. Using bioinformatics strategies, cDNAs were identified that encode a novel protein of 110 kDa containing a PAAD domain followed by a putative nucleotide-binding (NACHT) domain and several leucine-rich repeat domains. This protein thus resembles Cryopyrin, a protein implicated in hereditary hyperinflammation syndromes, and was termed PAN2 for PAAD and NACHT-containing protein 2. When expressed in HEK293 cells, PAN2 suppressed NF-kappaB induction by the cytokines tumor necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta), suggesting that this protein operates at a point of convergence in these two cytokine signaling pathways. This PAN2-mediated suppression of NF-kappaB was evident both in reporter gene assays that measured NF-kappaB transcriptional activity and electromobility shift assays that measured NF-kappaB DNA binding activity. PAN2 also suppressed NF-kappaB induction resulting from overexpression of several adapter proteins and protein kinases involved in the TNF or IL-1 receptor signal transduction, including TRAF2, TRAF6, RIP, IRAK2, and NF-kappaB-inducing kinase as well as the IkappaB kinases IKKalpha and IKKbeta. PAN2 also inhibited the cytokine-mediated activation of IKKalpha and IKKbeta as measured by in vitro kinase assays. Furthermore, PAN2 association with IKKalpha was demonstrated by co-immunoprecipitation assays, suggesting a direct effect on the IKK complex. These observations suggest a role for PAN2 in modulating NF-kappaB activity in cells, thus providing the insights into the potential functions of PAAD family proteins and their roles in controlling inflammatory responses.


Assuntos
Interleucina-1/fisiologia , NF-kappa B/biossíntese , Proteínas/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática , Humanos , Quinase I-kappa B , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/química , Proteínas/genética , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA