Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Econ ; 27(1): 1053-1060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101813

RESUMO

AIMS AND BACKGROUND: Whole-genome sequencing (WGS) is increasingly applied in clinical practice and expected to replace standard-of-care (SoC) genetic diagnostics in hematological malignancies. This study aims to assess and compare the fully burdened cost ('micro-costing') per patient for Swedish laboratories using WGS and SoC, respectively, in pediatric and adult patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). METHODS: The resource use and cost details associated with SoC, e.g. chromosome banding analysis, fluorescent in situ hybridization, and targeted sequencing analysis, were collected via activity-based costing methods from four diagnostic laboratories. For WGS, corresponding data was collected from two of the centers. A simulation-based scenario model was developed for analyzing the WGS cost based on different annual sample throughput to evaluate economy of scale. RESULTS: The average SoC total cost per patient was €2,465 for pediatric AML and €2,201 for pediatric ALL, while in adults, the corresponding cost was €2,458 for AML and €1,207 for ALL. The average WGS cost (90x tumor/30x normal; sequenced on the Illumina NovaSeq 6000 platform) was estimated to €3,472 based on an annual throughput of 2,500 analyses, however, with an annual volume of 7,500 analyses the average cost would decrease by 23% to €2,671. CONCLUSION: In summary, WGS is currently more costly than SoC, however the cost can be reduced by utilizing laboratories with higher throughput and by the expected decline in cost of reagents. Our data provides guidance to decision-makers for the resource allocation needed when implementing WGS in diagnostics of hematological malignancies.


Assuntos
Testes Genéticos , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sequenciamento Completo do Genoma , Humanos , Suécia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Sequenciamento Completo do Genoma/economia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Testes Genéticos/economia , Testes Genéticos/métodos , Adulto , Criança , Masculino , Feminino , Custos e Análise de Custo
2.
Blood ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968149

RESUMO

B cell progenitor acute lymphoblastic leukemia (BCP-ALL) is the most common childhood malignancy, driven by multiple genetic alterations that cause maturation arrest and accumulation of abnormal progenitor B cells. Current treatment protocols with chemotherapy have led to favorable outcomes but are associated with significant toxicity and risk of side effects, highlighting the necessity for highly effective, less toxic, targeted drugs, even in subtypes with a favorable outcome. Here, we used multimodal single-cell sequencing to delineate the transcriptional, epigenetic, and immunophenotypic characteristics of 23 childhood BCP-ALLs, belonging to the BCR::ABL1-positive, ETV6::RUNX1-positive, high hyperdiploid, and recently discovered DUX4-rearranged (DUX4-r) subtypes. Projection of the ALL cells along the normal hematopoietic differentiation axis revealed a diversity in the maturation pattern between the different BCP-ALL subtypes. Whereas the BCR::ABL1-, ETV6::RUNX1-positive, and high hyperdiploidy cells mainly showed similarities to normal pro-B cells, the DUX4-r ALL cells also displayed transcriptional signatures resembling mature B cells. Focusing on the DUX4-r subtype, we found that the blast population displayed multilineage priming toward non-hematopoietic cells, myeloid, and T cell lineages, but also an activation of PI3K/AKT signaling that sensitized the cells to PI3K inhibition in vivo. Given the multilineage priming of the DUX4-r blasts with aberrant expression of the myeloid marker CD371 (CLL-1), we generated chimeric antigen receptor T cells, which effectively eliminated DUX4-r ALL cells in vivo. These results provide a detailed characterization of BCP-ALL at the single-cell level and reveal therapeutic vulnerabilities in the DUX4-r subtype with implications for the understanding of ALL biology and new therapeutic strategies.

3.
Genes Chromosomes Cancer ; 63(7): e23257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031442

RESUMO

Gene panel sequencing has become a common diagnostic tool for detecting somatically acquired mutations in myeloid neoplasms. However, many panels have restricted content, provide insufficient sensitivity levels, or lack clinically validated workflows. We here describe the development and validation of the Genomic Medicine Sweden myeloid gene panel (GMS-MGP), a capture-based 191 gene panel including mandatory genes in contemporary guidelines as well as emerging candidates. The GMS-MGP displayed uniform coverage across all targets, including recognized difficult GC-rich areas. The validation of 117 previously described somatic variants showed a 100% concordance with a limit-of-detection of a 0.5% variant allele frequency (VAF), achieved by utilizing error correction and filtering against a panel-of-normals. A national interlaboratory comparison investigating 56 somatic variants demonstrated highly concordant results in both detection rate and reported VAFs. In addition, prospective analysis of 323 patients analyzed with the GMS-MGP as part of standard-of-care identified clinically significant genes as well as recurrent mutations in less well-studied genes. In conclusion, the GMS-MGP workflow supports sensitive detection of all clinically relevant genes, facilitates novel findings, and is, based on the capture-based design, easy to update once new guidelines become available. The GMS-MGP provides an important step toward nationally harmonized precision diagnostics of myeloid malignancies.


Assuntos
Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Mutação , Suécia , Testes Genéticos/métodos , Testes Genéticos/normas , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Frequência do Gene
4.
Cells ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38891058

RESUMO

Bladder cancer is a heterogenous disease, and molecular subtyping is a promising method to capture this variability. Currently, the immune compartment in relation to subtypes is poorly characterized. Here, we analyzed the immune compartment in bladder tumors and normal bladder urothelium with a focus on T cell subpopulations using flow cytometry and RNA sequencing. The results were investigated in relation to tumor invasiveness (NMIBC/MIBC) and molecular subtypes according to the Lund Taxonomy system. Whereas the NMIBC/MIBC differed in the overall immune infiltration only, the molecular subtypes differed both in terms of immune infiltration and immune compartment compositions. The Basal/Squamous (Ba/Sq) and genomically unstable (GU) tumors displayed increased immune infiltration compared to urothelial-like (Uro) tumors. Additionally, the GU tumors had a higher proportion of regulatory T cells within the immune compartment compared to Uro tumors. Furthermore, sequencing showed higher levels of exhaustion in CD8+ T cells from GU tumors compared to both Uro tumors and the control. Although no such difference was detected at the transcriptomic level in Uro tumors compared to the controls, CD8+ T cells in Uro tumors showed higher expression of several exhaustion markers at the protein level. Taken together, our findings indicate that depending on the molecular subtype, different immunotherapeutic interventions might be warranted.


Assuntos
Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Urotélio/patologia , Urotélio/metabolismo , Urotélio/imunologia
5.
Genes Chromosomes Cancer ; 63(5): e23242, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38738968

RESUMO

Constitutional polymorphisms in ARID5B are associated with an increased risk of developing high hyperdiploid (HeH; 51-67 chromosomes) pediatric B-cell precursor acute lymphoblastic leukemia (BCP ALL). Here, we investigated constitutional and somatic ARID5B variants in 1335 BCP ALL cases from five different cohorts, with a particular focus on HeH cases. In 353 HeH ALL that were heterozygous for risk alleles and trisomic for chromosome 10, where ARID5B is located, a significantly higher proportion of risk allele duplication was seen for the SNPs rs7090445 (p = 0.009), rs7089424 (p = 0.005), rs7073837 (p = 0.03), and rs10740055 (p = 0.04). Somatic ARID5B deletions were seen in 16/1335 cases (1.2%), being more common in HeH than in other genetic subtypes (2.2% vs. 0.4%; p = 0.002). The expression of ARID5B in HeH cases with genomic deletions was reduced, consistent with a functional role in leukemogenesis. Whole-genome sequencing and RNA-sequencing in HeH revealed additional somatic events involving ARID5B, resulting in a total frequency of 3.6% of HeH cases displaying a somatic ARID5B aberration. Overall, our results show that both constitutional and somatic events in ARID5B are involved in the leukemogenesis of pediatric BCP ALL, particularly in the HeH subtype.


Assuntos
Proteínas de Ligação a DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Fatores de Transcrição , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Proteínas de Ligação a DNA/genética , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Fatores de Transcrição/genética
6.
Cell Rep ; 43(5): 114099, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38636519

RESUMO

Interleukin-1 (IL-1)-family cytokines are potent modulators of inflammation, coordinating a vast array of immunological responses across innate and adaptive immune systems. Dysregulated IL-1-family cytokine signaling, however, is involved in a multitude of adverse health effects, such as chronic inflammatory conditions, autoimmune diseases, and cancer. Within the IL-1 family of cytokines, six-IL-1α, IL-1ß, IL-33, IL-36α, IL-36ß, and IL-36γ-require the IL-1 receptor accessory protein (IL-1RAcP) as their shared co-receptor. Common features of cytokine signaling include redundancy of signaling pathways, sharing of cytokines and receptors, pleiotropy of the cytokines themselves, and multifaceted immune responses. Accordingly, targeting multiple cytokines simultaneously is an emerging therapeutic strategy and can provide advantages over targeting a single cytokine pathway. Here, we show that two monoclonal antibodies, CAN10 and 3G5, which target IL-1RAcP for broad blockade of all associated cytokines, do so through distinct mechanisms and provide therapeutic opportunities for the treatment of inflammatory diseases.


Assuntos
Citocinas , Proteína Acessória do Receptor de Interleucina-1 , Transdução de Sinais , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Humanos , Animais , Citocinas/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/imunologia , Camundongos , Inflamação/imunologia , Inflamação/metabolismo
7.
Nanomaterials (Basel) ; 14(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38470783

RESUMO

The detection of oligonucleotides is a central step in many biomedical investigations. The most commonly used methods for detecting oligonucleotides often require concentration and amplification before detection. Therefore, developing detection methods with a direct read-out would be beneficial. Although commonly used for the detection of amplified oligonucleotides, fluorescent molecular beacons have been proposed for such direct detection. However, the reported limits of detection using molecular beacons are relatively high, ranging from 100 nM to a few µM, primarily limited by the beacon fluorescence background. In this study, we enhanced the relative signal contrast between hybridized and non-hybridized states of the beacons by immobilizing them on lightguiding nanowires. Upon hybridization to a complementary oligonucleotide, the fluorescence from the surface-bound beacon becomes coupled in the lightguiding nanowire core and is re-emitted at the nanowire tip in a narrower cone of light compared with the standard 4π emission. Prior knowledge of the nanowire positions allows for the continuous monitoring of fluorescence signals from each nanowire, which effectively facilitates the discrimination of signals arising from hybridization events against background signals. This resulted in improved signal-to-background and signal-to-noise ratios, which allowed for the direct detection of oligonucleotides at a concentration as low as 0.1 nM.

8.
Mol Aspects Med ; 96: 101250, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38330674

RESUMO

Current precision cancer medicine is dependent on the analyses of a plethora of clinically relevant genomic aberrations. During the last decade, next-generation sequencing (NGS) has gradually replaced most other methods for precision cancer diagnostics, spanning from targeted tumor-informed assays and gene panel sequencing to global whole-genome and whole-transcriptome sequencing analyses. The shift has been impelled by a clinical need to assess an increasing number of genomic alterations with diagnostic, prognostic and predictive impact, including more complex biomarkers (e.g. microsatellite instability, MSI, and homologous recombination deficiency, HRD), driven by the parallel development of novel targeted therapies and enabled by the rapid reduction in sequencing costs. This review focuses on these sequencing-based methods, puts their emergence in a historic perspective, highlights their clinical utility in diagnostics and decision-making in pediatric and adult cancer, as well as raises challenges for their clinical implementation. Finally, the importance of applying sensitive tools for longitudinal monitoring of treatment response and detection of measurable residual disease, as well as future avenues in the rapidly evolving field of sequencing-based methods are discussed.


Assuntos
Neoplasias , Humanos , Criança , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Medicina de Precisão/métodos
9.
Camb Prism Precis Med ; 1: e15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38550923

RESUMO

Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA