Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1331282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774232

RESUMO

Introduction: Polycystic ovary syndrome (PCOS) is a common multifactorial and polygenic disorder of the endocrine system, affecting up to 20% of women in reproductive age with a still unknown etiology. Follicular fluid (FF) represents an environment for the normal development of follicles rich in metabolites, hormones and neurotransmitters, but in some instances of PCOS the composition can be different. Vasoactive intestinal peptide (VIP) is an endogenous autonomic neuropeptide involved in follicular atresia, granulosa cell physiology and steroidogenesis. Methods: ELISA assays were performed to measure VIP and estradiol levels in human follicular fluids, while AMH, FSH, LH, estradiol and progesterone in the plasma were quantified by chemiluminescence. UHPLC/QTOF was used to perform the untargeted metabolomic analysis. Results: Our ELISA and metabolomic results show: i) an increased concentration of VIP in follicular fluid of PCOS patients (n=9) of about 30% with respect to control group (n=10) (132 ± 28 pg/ml versus 103 ± 26 pg/ml, p=0,03) in women undergoing in vitro fertilization (IVF), ii) a linear positive correlation (p=0.05, r=0.45) between VIP concentration and serum Anti-Müllerian Hormone (AMH) concentration and iii) a linear negative correlation between VIP and noradrenaline metabolism. No correlation between VIP and estradiol (E2) concentration in follicular fluid was found. A negative correlation was found between VIP and noradrenaline metabolite 3,4-dihydroxyphenylglycolaldehyde (DOPGAL) in follicular fluids. Conclusion: VIP concentration in follicular fluids was increased in PCOS patients and a correlation was found with noradrenaline metabolism indicating a possible dysregulation of the sympathetic reflex in the ovarian follicles. The functional role of VIP as noradrenergic modulator in ovarian physiology and PCOS pathophysiology was discussed.


Assuntos
Fertilização in vitro , Líquido Folicular , Síndrome do Ovário Policístico , Peptídeo Intestinal Vasoativo , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/sangue , Peptídeo Intestinal Vasoativo/metabolismo , Peptídeo Intestinal Vasoativo/sangue , Líquido Folicular/metabolismo , Adulto , Estradiol/sangue , Estradiol/metabolismo , Hormônio Antimülleriano/sangue , Hormônio Antimülleriano/metabolismo , Estudos de Casos e Controles
2.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791387

RESUMO

Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.


Assuntos
Células do Cúmulo , Oócitos , Oócitos/metabolismo , Células do Cúmulo/metabolismo , Células do Cúmulo/citologia , Humanos , Animais , Feminino , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Junções Comunicantes/metabolismo , Fosforilação Oxidativa , Cálcio/metabolismo , Canais de Potássio/metabolismo , Comunicação Celular
3.
Pharmaceutics ; 16(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543308

RESUMO

Human glioblastoma is probably the most malignant and aggressive among cerebral tumors, of which it represents approximately 80% of the reported cases, with an overall survival rate that is quite low. Current therapies include surgery, chemotherapy, and radiotherapy, with associated consistent side effects and low efficacy. The hardness in reaching the site of action, and overcoming the blood-brain barrier, is a major limitation of pharmacological treatments. In this paper, we report the synthesis and characterization of ZIF-90 (ZIF, Zeolitic Imidazolate Framework) nanoparticles as putative carriers of anticancer drugs to the brain. In particular, we successfully evaluated the biocompatibility of these nanoparticles, their stability in body fluids, and their ability to uptake in U251 human glioblastoma cell lines. Furthermore, we managed to synthesize ZIF-90 particles loaded with berberine, an alkaloid reported as a possible effective adjuvant in the treatment of glioblastoma. These findings could suggest ZIF-90 as a possible new strategy for brain cancer therapy and to study the physiological processes present in the central nervous system.

4.
Eur J Obstet Gynecol Reprod Biol X ; 21: 100273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38274243

RESUMO

The uterus is a highly innervated organ, and during labor, this innervation is at its highest level. Oxytocinergic fibers play an important role in labor and delivery and, in particular, the Lower Uterine Segment, cervix, and fundus are all controlled by motor neurofibers. Oxytocin is a neurohormone that acts on receptors located on the membrane of the smooth cells of the myometrium. During the stages of labor and delivery, its binding causes myofibers to contract, which enables the fundus of the uterus to act as a mediator. The aim of this study was to investigate the presence of oxytocinergic fibers in prolonged and non-prolonged dystocic delivery in a cohort of 90 patients, evaluated during the first and second stages of labor. Myometrial tissue samples were collected and evaluated by electron microscopy, in order to quantify differences in neurofibers concentrations between the investigated and control cohorts of patients. The authors of this experiment showed that the concentration of oxytocinergic fibers differs between non-prolonged and prolonged dystocic delivery. In particular, in prolonged dystocic delivery, compared to non-prolonged dystocic delivery, there is a lower amount of oxytocin fiber. The increase in oxytocin appeared to be ineffective in patients who experienced prolonged dystocic delivery, since the dystocic labor ended as a result of the altered presence of oxytocinergic fibers detected in this group of patients.

5.
Antioxidants (Basel) ; 12(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38001812

RESUMO

Goji berry (GB) shows beneficial effects on human health, although its effects on the male rabbit have been little investigated. This study examines the impact of GB dietary supplementation on the semen traits, antioxidant capacity of seminal plasma, and histological features of the reproductive tract of rabbit buck. Eighteen rabbits were distributed into two dietary groups: one receiving a commercial feed (Control), and the other a feed supplemented with 1% of GB (Goji). After a nutritional adaptation period of 60 days, the animals were subjected to semen collection every 15 days. The semen traits, libido, antioxidant, and inflammatory parameters were collected and analyzed. The rabbits were sacrificed after 60 days, and tissues of the genital tract were analyzed. Compared to the Control group, the Goji group showed higher spermatozoa concentration, motility, and vitality (p < 0.05), as well as fewer abnormal spermatozoa and a higher libido (p < 0.1). Histological features such as functional activity and hyperplasia were improved by GB and correlated with some semen traits (p < 0.05). Conversely, antioxidant and anti-inflammatory parameters were unaffected by the diet. These findings suggest that GB acts on the tissues of the reproductive tract positively influencing semen quality, although further studies are needed to understand the effect on oxidative stress.

6.
Cancers (Basel) ; 15(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509279

RESUMO

BACKGROUND: Chronic lymphocytic leukemia (CLL) is an incurable disorder associated with alterations in several pathways essential for survival and proliferation. Despite the advances made in CLL therapy with the new target agents, in some cases, relapses and resistance could occur, making the discovery of new alternatives to manage CLL refractoriness necessary. To provide new therapeutic strategies for CLL, we investigated the anti-leukemic activity of silver nanoparticles (AgNPs), whose impact on CLL cells has been poorly explored. METHODS: We studied the action mechanisms of AgNPs in vitro through flow cytometry and molecular analyses. To improve the bioavailability of AgNPs, we generated AgNPs coated with the anti-CD20 antibody Rituximab (AgNPs@Rituximab) and carried out imaging-based approaches and in vivo experiments to evaluate specificity, drug uptake, and efficacy. RESULTS: AgNPs reduced the viability of primary CLL cells and the HG-3 cell line by inducing an intrinsic apoptotic pathway characterized by Bax/Bcl-2 imbalance, caspase activation, and PARP degradation. Early apoptotic events triggered by AgNPs included enhanced Ca2+ influx and ROS overproduction. AgNPs synergistically potentiated the cytotoxicity of Venetoclax, Ibrutinib, and Bepridil. In vitro, the AgNPs@Rituximab conjugates were rapidly internalized within CLL cells and strongly prolonged the survival of CLL xenograft models compared to each unconjugated single agent. CONCLUSIONS: AgNPs showed strong anti-leukemic activity in CLL, with the potential for clinical translation in combination with agents used in CLL. The increased specificity of AgNPs@Rituximab toward CLL cells could be relevant for overcoming in vivo AgNPs' non-specific distribution and increasing their efficacy.

7.
Antibiotics (Basel) ; 12(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37370374

RESUMO

Urinary tract infections (UTI), which are among the most frequent cases of infectious diseases, mainly affect women. The most common treatment approach involves the use of antibiotics, although this solution is not always the most suitable, mainly because of the resistance that bacterial strains develop. Proanthocyanidins are a class of polyphenols, abundantly contained in cranberry extracts, which have shown beneficial effects in the treatment of urinary tract infections, due to their anti-adhesive properties toward bacteria, with respect to the membranes of the cells of the urothelium and intestine, thus reducing their virulence. In this work, we demonstrate via microscopy and scattering measurements how a mixture of cranberry and chondroitin sulfate can form a crosslinked structure with barrier properties. By using a design of experiment (DOE), we optimized the mass ratio to obtain a precipitate between cranberry extract and chondroitin sulfate in the presence of N-acetylcysteine and hyaluronic acid. By using transepithelial electrical resistance (TEER) chambers, we confirmed the barrier properties of the best mixture obtained with the DOE. Lastly, the antibiofilm action was investigated against five strains of Escherichia coli with different antibiotic sensitivity. The precipitate displayed a variable inhibitory effect in biofilm formation with major effects in UTI with an antibiotic resistance profile.

8.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36901993

RESUMO

Bladder cancer is the most common tumor of the urinary system, with a high incidence in the male population. Surgery and intravesical instillations can eradicate it, although recurrences are very common, with possible progression. For this reason, adjuvant therapy should be considered in all patients. Resveratrol displays a biphasic dose response both in vitro and in vivo (intravesical application) with an antiproliferative effect at high concentrations and antiangiogenic action in vivo (intraperitoneal application) at a low concentration, suggesting a potential role for it in clinical management as an adjuvant to conventional therapy. In this review, we examine the standard therapeutical approach to bladder cancer and the preclinical studies that have investigated resveratrol in xenotransplantation models of bladder cancer. Molecular signals are also discussed, with a particular focus on the STAT3 pathway and angiogenic growth factor modulation.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Masculino , Resveratrol/uso terapêutico , Neoplasias da Bexiga Urinária/patologia , Administração Intravesical , Terapia Combinada
9.
Cell Death Dis ; 13(12): 1055, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539400

RESUMO

Ion channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (KCa3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoKCa3.1) of various cancer cell lines. The role mitoKCa3.1 plays in cancer cells is still undefined. Here we report the synthesis and characterization of two mitochondria-targeted novel derivatives of a high-affinity KCa3.1 antagonist, TRAM-34, which retain the ability to block channel activity. The effects of these drugs were tested in melanoma, pancreatic ductal adenocarcinoma and breast cancer lines, as well as in vivo in two orthotopic models. We show that the mitochondria-targeted TRAM-34 derivatives induce release of mitochondrial reactive oxygen species, rapid depolarization of the mitochondrial membrane, fragmentation of the mitochondrial network. They trigger cancer cell death with an EC50 in the µM range, depending on channel expression. In contrast, inhibition of the plasma membrane KCa3.1 by membrane-impermeant Maurotoxin is without effect, indicating a specific role of mitoKCa3.1 in determining cell fate. At sub-lethal concentrations, pharmacological targeting of mitoKCa3.1 significantly reduced cancer cell migration by enhancing production of mitochondrial reactive oxygen species and nuclear factor-κB (NF-κB) activation, and by downregulating expression of Bcl-2 Nineteen kD-Interacting Protein (BNIP-3) and of Rho GTPase CDC-42. This signaling cascade finally leads to cytoskeletal reorganization and impaired migration. Overexpression of BNIP-3 or pharmacological modulation of NF-κB and CDC-42 prevented the migration-reducing effect of mitoTRAM-34. In orthotopic models of melanoma and pancreatic ductal adenocarcinoma, the tumors at sacrifice were 60% smaller in treated versus untreated animals. Metastasis of melanoma cells to lymph nodes was also drastically reduced. No signs of toxicity were observed. In summary, our results identify mitochondrial KCa3.1 as an unexpected player in cancer cell migration and show that its pharmacological targeting is efficient against both tumor growth and metastatic spread in vivo.


Assuntos
Carcinoma Ductal Pancreático , Melanoma , Neoplasias Pancreáticas , Canais de Potássio Cálcio-Ativados , Animais , NF-kappa B/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Canais de Potássio , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Neoplasias Pancreáticas
10.
Antioxidants (Basel) ; 11(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35624883

RESUMO

Advanced maternal age impairs reproductive performance, influencing the quantity and the quality of oocytes. Mitochondria dysfunction seems to play a decisive role in conditioning the quality of the female gamete. Different in vitro and in vivo studies, demonstrated the antioxidant and anti-inflammatory activities of Resveratrol and its ability to improve mitochondria function even if the exact mechanism of action has not yet been demonstrated in human oocytes. In this paper, by retrospective analysis, we evaluated follicular fluid (FF) miRNome modification in aged women with a poor ovarian reserve receiving a resveratrol-based supplement the three months before the in vitro Fertilization (IVF) cycle. We found 13 differentially expressed microRNAs (miRNAs) in women treated with resveratrol and specifically miR-125b-5p, miR-132-3p, miR-19a-3p, miR-30a-5p and miR-660-5p, regulating mitochondrial proteins, are able to control metabolism and mitochondrial biogenesis. MiRNA expression differences, observed after resveratrol treatment in FF from women with a poor prognosis for IVF, demonstrated that resveratrol may act on mitomiRNAs to improve follicular microenvironment by transcriptomic and proteomic modifications in granulosa cells.

11.
J Matern Fetal Neonatal Med ; 35(25): 7640-7648, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34338114

RESUMO

BACKGROUND: Resveratrol display's positive effects on follicle growth and development in preclinical studies while there is scantly information from clinical trials. The aim of this study was to evaluate the biological and clinical impact of a resveratrol-based multivitamin supplement on intracytoplasmatic sperm injection (ICSI) cycles. METHODS: A randomized, single-center controlled trial conducted at the University Center of Assisted Reproductive Technologies involving 101 women infertile women undergoing ICSI cycles was conducted. A pretreatment with a daily resveratrol based nutraceutical was administered to the Study Group; Control Group received folic acid. The primary outcomes were the number of developed mature follicles (>16 mm), total oocytes and MII oocytes recovered, the fertilization rate and the number of cleavage embryos/blastocysts obtained. Secondary endpoints were the duration and dosage of gonadotropins, the number of embryos for transfer, implantation, biochemical, clinical pregnancy rates, live birth and miscarriage rates. RESULTS: A significantly higher number of oocytes and MII oocytes were retrieved in the Study Group than in Control Group (p = .03 and p = .04, respectively). A higher fertilization rate (p = .004), more cleavage embryos/patient (p = .01), blastocytes/patients (p = .01) and cryopreserved embryos (p = .03) were obtained in the Study Group. No significant differences in biochemical or clinical pregnancy, live birth, and miscarriage rates were revealed, but a trend to a higher live birth rate was revealed in the Study Group. CONCLUSIONS: A 3 months period of dietary supplementation with a resveratrol-based multivitamin nutraceutical leads to better biological effects on ICSI cycles. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov registration identifier: NCT04386499.


Assuntos
Aborto Espontâneo , Infertilidade Feminina , Gravidez , Humanos , Masculino , Feminino , Injeções de Esperma Intracitoplásmicas , Resveratrol , Infertilidade Feminina/terapia , Transferência Embrionária , Sêmen , Taxa de Gravidez , Suplementos Nutricionais , Fertilização in vitro , Estudos Retrospectivos
12.
Fertil Steril ; 115(4): 1063-1073, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33487442

RESUMO

OBJECTIVE: To study the biological effects of resveratrol on the growth, electrophysiology, and mitochondrial function of human granulosa cells (h-GCs). DESIGN: Preclinical study. SETTING: Electrophysiology laboratory and in vitro fertilization unit. PATIENT(S): This study included h-GCs from seven infertile women undergoing assisted reproductive techniques. INTERVENTION(S): Human ovarian Granulosa Cell Tumor (GCT) cell line COV434 and h-GCs obtained after oocyte retrieval were cultured in the absence or presence of resveratrol. MAIN OUTCOME MEASURE(S): Granulosa cells were evaluated for cell viability and mitochondrial activity. Electrophysiological recordings and evaluation of potassium current (IKur) and Ca2+ concentration were also performed. RESULT(S): Resveratrol induced mitochondrial activity in a bell-shaped, dose-effect-dependent manner. Specifically, resveratrol treatment (3 µM, 48 hours) increased ATP production and cell viability and promoted the induction of cellular differentiation. These biological changes were associated with mitochondrial biogenesis. Electrophysiological recordings showed that resveratrol reduced the functional expression of an ultra rapid activating, slow inactivating, delayed rectifier potassium current (IKur) that is associated with a plasma membrane depolarization and that promotes an increase in intracellular Ca2+. CONCLUSION(S): The effects of resveratrol on potassium current and mitochondrial biogenesis in h-GCs could explain the beneficial effects of this polyphenol on the physiology of the female reproductive system. These findings suggest there are therapeutic implications of resveratrol in a clinical setting.


Assuntos
Antioxidantes/farmacologia , Células da Granulosa/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Resveratrol/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Células da Granulosa/fisiologia , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/fisiologia
13.
Front Physiol ; 12: 790922, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069252

RESUMO

Glioblastomas (GBs) are among the most common tumors with high malignancy and invasiveness of the central nervous system. Several alterations in protein kinase and ion channel activity are involved to maintain the malignancy. Among them, phosphatidylinositol 3-kinase (PI3K) activity and intermediate conductance calcium-activated potassium (KCa3.1) current are involved in several aspects of GB biology. By using the electrophysiological approach and noise analysis, we observed that KCa3.1 channel activity is LY294002-sensitive and Wortmannin-resistant in accordance with the involvement of PI3K class IIß (PI3KC2ß). This modulation was observed also during the endogenous activation of KCa3.1 current with histamine. The principal action of PI3KC2ß regulation was the reduction of open probability in intracellular free calcium saturating concentration. An explanation based on the "three-gate" model of the KCa3.1 channel by PI3KC2ß was proposed. Based on the roles of KCa3.1 and PI3KC2ß in GB biology, a therapeutic implication was suggested to prevent chemo- and radioresistance mechanisms.

14.
J Clin Med ; 9(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322606

RESUMO

BACKGROUND: It is known that a multitude of factors may lead to male factor infertility, but still, in the majority of cases, the cause remains largely idiopathic, reflecting poor understanding of the basic process of spermatogenesis and the mechanisms involved. Resveratrol is a polyphenol compound that displays several cellular aspects mainly associated with SIRT1-pathway activation and promotion of mitochondrial enhancer activities. In several animal models, resveratrol has shown positive effects on mitochondria and membrane potential. This could explain effects on sperm concentration and motility. The aim of this study is to evaluate the effects on the semen parameters of GENANTE®, a multivitamin supplement containing 150 mg of resveratrol/day, in patients with idiopathic infertility. METHODS: This was a prospective single center clinical study. Twenty patients took a multivitamin supplement based on 150 mg of resveratrol (GENANTE®), in the form of an oral tablet every 12 h, and were followed up at 1, 3, and 6 months after treatment. Pre- and post-treatment evaluation included history, clinical examination, semen analysis, hormonal determinations, and scrotal and prostatic ultrasound. RESULTS: Our preliminary pilot study demonstrated that the multivitamin supplement based on resveratrol improves sperm motility (48.3% ± 13.8 vs. 59.0% ± 12.8, p = 0.0001) and concentration (22.6×106/mL ± 9.5 vs. 25.7×106/mL ± 8.1, p = 0.0001) after 3 and 6 months of treatment in men with idiopathic infertility. CONCLUSION: Our data suggest that targeting the metabolic and energetic pathways involved in spermatogenesis and mitochondrial activity could lead to potential effects and counteract subfertility/infertility in men through a mitochondria dynamics mechanism. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov registration identifier: NCT03864198, registered on 1 January 2019.

15.
Animals (Basel) ; 10(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143190

RESUMO

This study examined the effects of goji berries dietary supplementation on the energetic metabolism of doe. Thirty days before artificial insemination, 75 New Zealand White does were assigned to three different diets: commercial standard diet (C) and supplemented with 1% (LG) and 3% (HG) of goji berries, respectively. Body conditions, hormones and metabolites were monitored until weaning. Body weight and BCS were higher in HG than C (p < 0.05). LG showed lower T3/T4 ratio and cortisol concentrations (p < 0.05) and tended to have lower indices of insulin resistances (p < 0.1) than HG. Compared to control, leptin was higher in HG at AI (p < 0.01) and in LG during lactation (p < 0.05). Two principal components were extracted by multivariate analysis describing the relationships between (1) non-esterified fatty acids, insulin and glucose levels, and (2) body conditions and leptin metabolism. The first component highlighted the energy deficit and the insulin resistance of the does during pregnancy and lactation. The second one showed that leptin, body weight and Body Condition Score (BCS) enhance as levels of goji berries in the diet increase. Thus, the effects of goji supplementation are dose-dependent: an improvement on energy metabolism was achieved with a low-dose while the highest dose could determine excessive fattening and insulin resistance in does.

16.
Acta Biomed ; 91(13-S): e2020012, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33170162

RESUMO

Genetic variants may contribute to confer elite athlete status. However, this does not mean that a person with favourable genetic traits would become a champion because multiple genetic interactions and epigenetic contributions coupled with confounding environmental factors shape the overall phenotype. This opens up a new area in sports genetics with respect to commercial genetic testing. The analysis of genetic polymorphisms linked to sport performance would provide insights into the potential of becoming an elite endurance or power performer. This mini-review aims to highlight genetic interactions that are associated with performance phenotypes and their potentials to be used as markers for talent identification and trainability.


Assuntos
Desempenho Atlético , Atletas , Testes Genéticos , Humanos , Fenótipo , Polimorfismo Genético
17.
Cancers (Basel) ; 12(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126474

RESUMO

Glioblastoma is one the most aggressive primary brain tumors in adults, and, despite the fact that radiation and chemotherapy after surgical approaches have been the treatments increasing the survival rates, the prognosis of patients remains poor. Today, the attention is focused on highlighting complementary treatments that can be helpful in improving the classic therapeutic approaches. It is known that 1α,25(OH)2 vitamin D3, a molecule involved in bone metabolism, has many serendipidy effects in cells. It targets normal and cancer cells via genomic pathway by vitamin D3 receptor or via non-genomic pathways. To interrogate possible functions of 1α,25(OH)2 vitamin D3 in multiforme glioblastoma, we used three cell lines, wild-type p53 GL15 and mutant p53 U251 and LN18 cells. We demonstrated that 1α,25(OH)2 vitamin D3 acts via vitamin D receptor in GL15 cells and via neutral sphingomyelinase1, with an enrichment of ceramide pool, in U251 and LN18 cells. Changes in sphingomyelin/ceramide content were considered to be possibly responsible for the differentiating and antiproliferative effect of 1α,25(OH)2 vitamin D in U251 and LN18 cells, as shown, respectively, in vitro by immunofluorescence and in vivo by experiments of xenotransplantation in eggs. This is the first time 1α,25(OH)2 vitamin D3 is interrogated for the response of multiforme glioblastoma cells in dependence on the p53 mutation, and the results define neutral sphingomyelinase1 as a signaling effector.

18.
Curr Pharm Des ; 26(18): 2102-2108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32233996

RESUMO

Glioblastoma (GB) represents the most common and malignant form of glioma cancer. The Gold Standard in Glioblastoma is neurosurgical tumor removal and radiotherapy treatment in concomitant with temozolomide (TMZ). Unfortunately, because of tumor chemo and radio-resistance during this therapy, the patient's outcome remains very poor, with a median overall survival of about 14.6 months. Resveratrol is a natural polyphenol with a stilbene structure with chemopreventive and anticancer properties. In the present review, we evaluated data from preclinical studies conducted with resveratrol as a possible adjuvant during the standard protocol of GB. Resveratrol can reach the brain parenchyma at sub-micromolar concentrations when administrated through conventional routes. In this way, resveratrol reduces cell invasion and increases the efficacy of radiotherapy (radiosensitizer effects) and temozolomide. The molecular mechanism of the adjuvant action of resveratrol may depend upon the reduction of PI3K/AKT/NF-κB axis and downstream targets O-6-methylguanine-DNA methyltransferase (MGMT) and metalloproteinase-2 (MMP-2). It has been reported that redox signaling plays an important role in the regulation of autophagy. Resveratrol administration by External Carotid Artery (ECA) injection or by Lumbar Puncture (LP) can reach micromolar concentrations in tumor mass where it would inhibit tumor growth by STAT-3 dependent mechanisms. Preclinical evidences indicate a positive effect on the use of resveratrol as an adjuvant in anti-GB therapy. Ameliorated formulations of resveratrol with a favorable plasmatic profile for a better brain distribution and timing sequences during radio and chemotherapy could represent a critical aspect for resveratrol use as an adjuvant for a clinical evaluation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Metaloproteinase 2 da Matriz , Fosfatidilinositol 3-Quinases , Resveratrol/farmacologia
19.
Curr Pharm Des ; 26(18): 2096-2101, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175839

RESUMO

The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.


Assuntos
Sinalização do Cálcio , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Sítios de Ligação , Cálcio/metabolismo , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo
20.
Front Nutr ; 7: 570047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34422874

RESUMO

Resveratrol attracts great interest because of the plethora of in vitro effects at the micromolar concentration range. Unfortunately, these effects are difficult to establish in vivo, due to the low concentration of resveratrol reached. This discrepancy is due to the molecules low solubility in water that favors the propensity for an intestinal absorption rather than in the gastric compartment. To address these challenges, we developed a Solid Dispersion of Resveratrol Supported by Magnesium Di Hydroxide formulation (Resv@MDH). This formulation displays increased water solubility and better bioavailability relative to pure resveratrol in the rabbit animal model. In our study, we evaluated the pharmacokinetics profile of resveratrol in six healthy human subjects following 180 mg of oral resveratrol administration, derived from Resv@MDH or pure resveratrol. Free resveratrol was evaluated in the whole blood sample by using HPLC - MS/MS. In comparison with pure resveratrol that displays an increase of the maximum plasma concentration, Cmax at about 90 min and 2 µM, Resv@MDH displays an earlier peak of resveratrol concentration with an increase of Cmax at about 30 min and 6 µM. The different kinetics suggest a main gastric route for resveratrol absorption from Resv@MDH, where, because of its improved dissolution rate, there seems to be a higher propensity for an acidic environment, as opposed to that with pure resveratrol. This conclusion is also supported by the numerical simulation analysis, which considers the principal steps during the oral route administration. Moreover, there is a 2-fold increase in the amount of free resveratrol with respect to pure resveratrol confirming a better bioavailability observed in the animal model. The characteristic feature of the pharmacokinetic profile of Resv@MDH implies that the beneficial properties of resveratrol in human health should be capitalized on it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA