Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513516

RESUMO

The occurrence of microplastics (MPs) and nanoplastics (NPs) in soils potentially induce morphological, physiological, and biochemical alterations in plants. The present study investigated the effects of MPs/NPs on lettuce (Lactuca sativa L. var. capitata) plants by focusing on (i) four different particle sizes of polyethylene micro- and nanoplastics, at (ii) four concentrations. Photosynthetic activity, morphological changes in plants, and metabolomic shifts in roots and leaves were investigated. Our findings revealed that particle size plays a pivotal role in influencing various growth traits of lettuce (biomass, color segmentation, greening index, leaf area, and photosynthetic activity), physiological parameters (including maximum quantum yield - Fv/Fmmax, or quantum yield in the steady-state Fv/FmLss, NPQLss, RfdLss, FtLss, FqLss), and metabolomic signatures. Smaller plastic sizes demonstrated a dose-dependent impact on aboveground plant structures, resulting in an overall elicitation of biosynthetic processes. Conversely, larger plastic size had a major impact on root metabolomics, leading to a negative modulation of biosynthetic processes. Specifically, the biosynthesis of secondary metabolites, phytohormone crosstalk, and the metabolism of lipids and fatty acids were among the most affected processes. In addition, nitrogen-containing compounds accumulated following plastic treatments. Our results highlighted a tight correlation between the qPCR analysis of genes associated with the soil nitrogen cycle (such as NifH, NirK, and NosZ), available nitrogen pools in soil (including NO3- and NH4), N-containing metabolites and morpho-physiological parameters of lettuce plants subjected to MPs/NPs. These findings underscore the intricate relationship between specific plastic contaminations, nitrogen dynamics, and plant performance.


Assuntos
Lactuca , Microplásticos , Microplásticos/análise , Microplásticos/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Solo/química
2.
Environ Manage ; 73(3): 532-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37845575

RESUMO

The rationale of this study originates from the primary sector's multiple roles in the global warming issue. Agriculture is reported among the main causes of anthropogenic global warming. At the same time, it is profoundly impacted by climate change and concurrently holds potential as a solution through the sequestration of soil organic carbon (SOC) facilitated by Conservation Agriculture (CA). However, the findings in the literature are controversial on the SOC sequestration capacity and the profitability of CA implementation. Considering the new and old objectives of the sector, this paper tackles the assessment of the actual capabilities of CA to be a viable strategy to pursue the social good of climate change mitigation and concurrently be profitable for farmers. The economic profitability and environmental performance of CA are assessed analysing data from a field experiment in Northern Italy (European temperate area) and identifying the best management practice by means of a data envelopment analysis.


Assuntos
Carbono , Solo , Carbono/análise , Agricultura , Mudança Climática , Itália , Sequestro de Carbono
3.
Front Plant Sci ; 14: 1235686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692443

RESUMO

In addition to be used as a plant protection agent, copper (Cu) is also an essential micronutrient for plant growth and development. The bioavailability of Cu in agricultural systems can be limited due to its specific physical-chemical characteristics, leading to imbalances in plant production. To address this issue, an experimental trial was conducted on Genovese basil (Ocimum basilicum L.) in protected conditions to comparatively evaluate the effects of a vegetable protein hydrolysate (VPH), free Cu and Cu complexed with peptides and amino acids of vegetal origin (Cu and Cu-VPH, respectively), and a combination of VPH and Cu-VPH (VPH+Cu-VPH). The study showed that the combined application of VPH+Cu-VPH led to a significant average increase of 16.3% in fresh yield compared to the untreated Control and Cu treatment. This finding was supported by an improved photosynthetic performance in ACO2 (+29%) and Fv/Fm (+7%). Furthermore, mineral analysis using ICP OES demonstrated that Cu and Cu-VPH treatments determined, on average, a 15.1-, 16.9-, and 1.9-fold increase in Cu in plant tissues compared to control, VPH, and VPH+Cu-VPH treatments, respectively. However, the VPH+Cu-VPH treatment induced the highest contents of the other analyzed ions, except for P. In particular, Mg, Mn, Ca, and Fe, which take part in the constitution of chlorophylls, water splitting system, and photosynthetic electron transport chain, increased by 23%, 21%, 25%, and 32% compared to respective controls. Indeed, this improved the photosynthetic efficiency and the carboxylation capacity of the plants, and consequently, the physiological and productive performance of Genovese basil, compared to all other treatments and control. Consistently, the untargeted metabolomics also pointed out a distinctive modulation of phytochemical signatures as a function of the treatment. An accumulation of alkaloids, terpenoids, and phenylpropanoids was observed following Cu treatment, suggesting an oxidative imbalance upon metal exposure. In contrast, a mitigation of oxidative stress was highlighted in Cu-VPH and VPH+Cu-VPH, where the treatments reduced stress-related metabolites. Overall, these results highlight an interaction between Cu and VPH, hence paving the way towards the combined use of Cu and biostimulants to optimize agronomic interventions.

4.
Front Plant Sci ; 14: 1236199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711298

RESUMO

The use of microbial biostimulants in agriculture is recognized as a sustainable approach to promoting crop productivity and quality due to improved nutrient uptake, enhanced stress tolerance, and improved ability to cope with non-optimal environments. The present paper aimed to comparatively investigate the effect of seven different commercial mycorrhizal-based treatments in terms of yield, phytochemical components, and technological traits of Malvasia di Candia Aromatica grape (Vitis vinifera L.) plants. Metabolomic analysis and photosynthetic performance were first investigated in leaves to point out biochemical differences related to plant growth. Higher photosynthetic efficiency and better PSII functioning were found in biostimulant-treated vines, reflecting an overall decrease in photoinhibition compared to untreated plants. Untargeted metabolomics followed by multivariate statistics highlighted a robust reprogramming of primary (lipids) and secondary (alkaloids and terpenoids) metabolites in treated plants. The analysis of berry yield and chemical components exhibited significant differences depending on the biostimulant product. Generally, berries obtained from treated plants displayed improved contents of polyphenols and sugars, while yield remained unchanged. These results elucidated the significant role of microbial biostimulants in determining the quality of grape berries and eliciting biochemical changes in vines.

5.
Front Microbiol ; 14: 1221633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601382

RESUMO

Plant growth-promoting rhizobacteria (PGPR) with antagonistic activity toward plant pathogenic fungi are valuable candidates for the development of novel plant protection products based on biocontrol activity. The very first step in the formulation of such products is to screen the potential effectiveness of the selected microorganism(s). In this study, non-pathogenic rhizobacteria were isolated from the rhizosphere of tomato plants and evaluated for their biocontrol activity against three species of mycotoxin-producing Alternaria. The assessment of their biocontrol potential involved investigating both fungal biomass and Alternaria toxin reduction. A ranking system developed allowed for the identification of the 12 best-performing strains among the initial 85 isolates. Several rhizobacteria showed a significant reduction in fungal biomass (up to 76%) and/or mycotoxin production (up to 99.7%). Moreover, the same isolates also demonstrated plant growth-promoting (PGP) traits such as siderophore or IAA production, inorganic phosphate solubilization, and nitrogen fixation, confirming the multifaceted properties of PGPRs. Bacillus species, particularly B. amyloliquefaciens and two strains of B. subtilis, showed the highest efficacy in reducing fungal biomass and were also effective in lowering mycotoxin production. Isolates such as Enterobacter ludwigii, Enterobacter asburiae, Serratia nematodiphila, Pantoea agglomerans, and Kosakonia cowanii showed moderate efficacy. Results suggest that by leveraging the diverse capabilities of different microbial strains, a consortium-based approach would provide a broader spectrum of effectiveness, thereby signaling a more encouraging resolution for sustainable agriculture and addressing the multifaceted nature of crop-related biotic challenges.

6.
Plants (Basel) ; 12(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840048

RESUMO

Abutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti.

7.
Antioxidants (Basel) ; 12(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830078

RESUMO

The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 ± 0.243 mg/100 g), Z-carotene (0.021 ± 0.021 mg/100 g), 13-z-lycopene (0.145 ± 0.052 mg/100 g) and all-trans-lycopene (12.586 ± 1.511 mg/100 g), and increased values for total phenolic content (12.9 ± 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 ± 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 ± 3.7 mgTE/g), reducing power (FRAP, 23.6 ± 6.3 mgTE/g and CUPRAC, 37.4 ± 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 ± 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.

8.
Sci Rep ; 13(1): 721, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639732

RESUMO

Increasing the use of cover crops (CCs) is a necessity in sustainable viticulture, although it might clash with possible excessive competition towards vines. Especially in a climate-change scenario, the latter feature should be minimized while maintaining ecosystem services. Aimed at identifying CCs for vineyard floor management, the trial characterized several species according to their evapotranspiration (ET) rates, root growth patterns, and soil aggregate stability potential. The study was performed in 2020 in Piacenza (Northern Italy) on 15 CC species grown in pots kept outdoor and classified as grasses (GR), legumes (LE) and creeping (CR). Together with bare soil (control), they were arranged in a complete randomized block design. CCs ET was assessed through a gravimetric method, starting before mowing and then repeated 2, 8, 17 and 25 days thereafter. Above-ground dry biomass (ADW), root length density (RLD), root dry weight (RDW) and root diameter class length (DCL) were measured, and mean weight diameter (MWD) was calculated within 0-20 cm depth. Before mowing, ET was the highest in LE (18.6 mm day-1) and the lowest in CR (8.1 mm day-1) the latter being even lower than the control (8.5 mm day-1). The high ET rates shown by LE were mainly related to very fast development after sowing, rather than to a higher transpiration per unit of leaf area. After mowing, the 15 species' ET reduction (%) plotted vs leaf area index (LAI, m2 m-2) yielded a very close fit (R2 = 0.94), suggesting that (i) a linear decrease in water use is expected anytime starting with an initial LAI of 5-6, (ii) a saturation effect seems to be reached beyond this limit. Selection of cover crop species to be used in the vineyard was mainly based on diurnal and seasonal water use rates as well as dynamic and extent of root growth patterns. Among GR, Festuca ovina stood out as the one with the lowest ET due to its "dwarfing" characteristics, making it suitable for a permanent inter-row covering. CR species confirmed their potential for under-vine grassing, assuring rapid soil coverage, lowest ET rates, and shallow root colonization.


Assuntos
Ecossistema , Solo , Água , Biomassa , Poaceae , Produtos Agrícolas , Verduras
9.
Front Plant Sci ; 13: 907349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35941943

RESUMO

Plant Biostimulants (BSs) are a valid supplement to be considered for the integration of conventional fertilization practices. Research in the BS field keeps providing alternative products of various origin, which can be employed in organic and conventional agriculture. In this study, we investigated the biostimulant activity of the eluate obtained as a by-product from the industrial production of lactic acid bacteria on bare agricultural soil. Eluates utilization is in line with the circular economy principle, creating economical value for an industrial waste product. The research focused on the study of physical, chemical, biochemical, and microbiological changes occurring in agricultural soil treated with the biowaste eluate, applied at three different dosages. The final aim was to demonstrate if, and to what extent, the application of the eluate improved soil quality parameters and enhanced the presence of beneficial soil-borne microbial communities. Results indicate that a single application at the two lower dosages does not have a pronounced effect on the soil chemical parameters tested, and neither on the biochemical proprieties. Only the higher dosage applied reported an improvement in the enzymatic activities of ß-glucosidase and urease and in the chemical composition, showing a higher content of total, nitric and ammonia N, total K, and higher humification rate. On the other hand, microbial communities were strongly influenced at all dosages, showing a decrease in the bacterial biodiversity and an increase in the fungal biodiversity. Bioinformatic analysis revealed that some Operative Taxonomic Units (OTUs) promoted by the eluate application, belong to known plant growth promoting microbes. Some other OTUs, negatively influenced were attributed to known plant pathogens, mainly Fusarium spp. Finally, the ecotoxicological parameters were also determined and allowed to establish that no toxic effect occurred upon eluate applications onto soil.

10.
Front Plant Sci ; 13: 956391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035726

RESUMO

Co-inoculation of arbuscular mycorrhizal fungi (AMF) and bacteria can synergically and potentially increase nitrogen use efficiency (NUE) in plants, thus, reducing nitrogen (N) fertilizers use and their environmental impact. However, limited research is available on AMF-bacteria interaction, and the definition of synergisms or antagonistic effects is unexplored. In this study, we adopted a response surface methodology (RSM) to assess the optimal combination of AMF (Rhizoglomus irregulare and Funneliformis mosseae) and Bacillus megaterium (a PGPR-plant growth promoting rhizobacteria) formulations to maximize agronomical and chemical parameters linked to N utilization in maize (Zea mays L.). The fitted mathematical models, and also 3D response surface and contour plots, allowed us to determine the optimal AMF and bacterial doses, which are approximately accorded to 2.1 kg ha-1 of both formulations. These levels provided the maximum values of SPAD, aspartate, and glutamate. On the contrary, agronomic parameters were not affected, except for the nitrogen harvest index (NHI), which was slightly affected (p-value of < 0.10) and indicated a higher N accumulation in grain following inoculation with 4.1 and 0.1 kg ha-1 of AMF and B. megaterium, respectively. Nonetheless, the identification of the saddle points for asparagine and the tendency to differently allocate N when AMF or PGPR were used alone, pointed out the complexity of microorganism interaction and suggests the need for further investigations aimed at unraveling the mechanisms underlying this symbiosis.

11.
J Quat Sci ; 37(2): 235-256, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35874301

RESUMO

The Middle to Upper Palaeolithic transition, between 50 000 and 40 000 years ago, is a period of important ecological and cultural changes. In this framework, the Rock Shelter of Uluzzo C (Apulia, southern Italy) represents an important site due to Late Mousterian and Uluzzian evidence preserved in its stratigraphic sequence. Here, we present the results of a multidisciplinary analysis performed on the materials collected between 2016 and 2018 from the Uluzzian stratigraphic units (SUs) 3, 15 and 17. The analysis involved lithic technology, use-wear, zooarchaeology, ancient DNA of sediments and palaeoproteomics, completed by quartz single-grain optically stimulated luminescence dating of the cave sediments. The lithic assemblage is characterized by a volumetric production and a debitage with no or little management of the convexities (by using the bipolar technique), with the objective to produce bladelets and flakelets. The zooarchaeological study found evidence of butchery activity and of the possible exploitation of marine resources, while drawing a picture of a patchy landscape, composed of open forests and dry open environments surrounding the shelter. Ancient mitochondrial DNA from two mammalian taxa were recovered from the sediments. Preliminary zooarchaeology by mass spectrometry results are consistent with ancient DNA and zooarchaeological taxonomic information, while further palaeoproteomics investigations are ongoing. Our new data from the re-discovery of the Uluzzo C Rock Shelter represent an important contribution to better understand the meaning of the Uluzzian in the context of the Middle/Upper Palaeolithic transition in south-eastern Italy.

12.
Physiol Plant ; 174(2): e13679, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35362106

RESUMO

Seed inoculation with beneficial microorganisms has gained importance as it has been proven to show biostimulant activity in plants, especially in terms of abiotic/biotic stress tolerance and plant growth promotion, representing a sustainable way to ensure yield stability under low input sustainable agriculture. Nevertheless, limited knowledge is available concerning the molecular and physiological processes underlying the root-inoculant symbiosis or plant response at the root system level. Our work aimed to integrate the interrelationship between agronomic traits, rhizosphere microbial population and metabolic processes in roots, following seed treatment with either arbuscular mycorrhizal fungi (AMF) or Plant Growth-Promoting Rhizobacteria (PGPR). To this aim, maize was grown under open field conditions with either optimal or reduced nitrogen availability. Both seed treatments increased nitrogen uptake efficiency under reduced nitrogen supply revealed some microbial community changes among treatments at root microbiome level and limited yield increases, while significant changes could be observed at metabolome level. Amino acid, lipid, flavone, lignan, and phenylpropanoid concentrations were mostly modulated. Integrative analysis of multi-omics datasets (Multiple Co-Inertia Analysis) highlighted a strong correlation between the metagenomics and the untargeted metabolomics datasets, suggesting a coordinate modulation of root physiological traits.


Assuntos
Micorrizas , Rizosfera , Bactérias/metabolismo , Metaboloma , Micorrizas/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Sementes/metabolismo , Microbiologia do Solo , Zea mays/metabolismo
13.
Front Nutr ; 8: 667812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277680

RESUMO

Corchorus olitorius L. is an African leafy vegetable of high nutritional interest. To assess its agricultural suitability to sustainable cultivation conditions and its potential benefits for human nutrition, its phytochemical content in response to conservation agriculture practices [i.e., no-tillage (NT) and cover crop maintenance] and low water regime were evaluated and compared with response under conventional agriculture management. Hydric stress and NT did not affect the content of antioxidant metabolites, compared to conventional agricultural practices. In both conditions, leaves were found to be a great source of phenolic compounds. The effect of these phenolic fractions was assessed on two colon cell phenotypes to evaluate putative nutraceutical properties. Polyphenol-enriched extracts (PEEs) displayed selective cytotoxic activities against tumor Caco-2 cells but not on the healthy CCD841 line. PEEs were able to trigger oxidative stress and to inhibit the activity of glutathione-independent antioxidant enzymes on Caco-2 cells. C. olitorius showed to be a promising crop for improving both agricultural sustainability and health benefits due to the great amount of antioxidant compounds in leaves, whose occurrence is not altered by stressful farming conditions. Given its high adaptability, the cultivation of this crop is therefore recommendable also in the Mediterranean Basin.

14.
Front Plant Sci ; 12: 660620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859664

RESUMO

Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This novel comparative analysis revealed different accumulation of plant-beneficial functions contributing genes, and the presence of different genes that accomplished the same functions. Greenhouse assays on tomato seedlings from BBCH 11-12 to BBCH > 14 were performed under either organic or conventional management. In each of them, three PGPR inoculations (control, K. variicola UC4115, A. brasilense Sp7) were applied at either seed-, root-, and seed plus root level. Results confirmed the PGP potential of K. variicola UC4115; in particular, its high value potential as indole-3-acetic acid producer was observed in increasing of root length density and diameter class length parameters. While, in general, A. brasilense Sp7 had a greater effect on biomass, probably due to its high ability as nitrogen-fixing bacteria. For K. variicola UC4115, the most consistent data were noticed under organic management, with application at seed level. While, A. brasilense Sp7 showed the greatest performance under conventional management. Our data highlight the necessity to tailor the selected PGPR, with the mode of inoculation and the crop-soil combination.

15.
J Environ Qual ; 50(2): 504-512, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33616220

RESUMO

Organic and mineral fertilizers are important sources of ammonia (NH3 ) emissions from agricultural fields. The objectives of this study were (a) to evaluate how different cover crop (CC) residues (i.e., rye [Secale cereale L.], white mustard [Sinapis alba L.], and bare soil as control) in combination with different application methods of digestate (surface broadcast vs. shallow injection) affect NH3 volatilization before planting maize (Zea mays L.) and (b) to assess the residual effect of previous CCs on NH3 volatilization after urea top-dress application at the V5-V6 phonological stage of maize. Ammonia volatilization was measured using semi-static chambers for 14 d (335 h) after planting and for 6 d (150 h) at the V5-V6 stage. Overall, NH3 emissions decreased by 67-77% with digestate injection compared with surface broadcasting. However, the reduction in NH3 volatilization using the injection method was significantly lower with mustard residue (6.72 kg NH3 -N ha-1 ) than with rye residue (14.15 kg NH3 -N ha-1 ), which allowed for more volatilization by increasing the exposure of digestate to the air. Broadcast digestate method did not affect the cumulative NH3 -N losses obtained with different CC types. After urea top-dressing at the V5-V6 stage of maize, the cumulative losses of NH3 (during 150 h) were 2.99 kg NH3 -N ha-1 with rye as previous CC and 2.49 kg NH3 -N ha-1 with mustard. Our study shows that digestate injection before maize planting and urea top-dressing application followed immediately by irrigation (15 mm) could be considered as useful strategies to mitigate NH3 volatilization and increase N use efficiency in maize.


Assuntos
Amônia , Zea mays , Agricultura , Amônia/análise , Fertilizantes/análise , Nitrogênio/análise , Estações do Ano , Solo , Volatilização
16.
Biology (Basel) ; 10(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440642

RESUMO

Loss of soil biodiversity and fertility in Sub-Saharan Africa (SSA) may put the food security of smallholder farmers in peril. Food systems in SSA are seeing the rise of African indigenous vegetables (AIVs) that are underexploited but locally consumed without being considered a primary source of food and income. Here we present a field study, a first of its kind, in which we investigated the effects of different cropping systems and inclusion of AIVs in the farming approach on bacterial and fungal biodiversity and community structures, enzymatic activity, and the alteration status of soils of the smallholder farmers in Kenya. When compared to mainstream farming approaches, the composition and biodiversity of bacteria and fungi under AIV cultivations was significantly different. Tillage had a significant impact only on the fungal communities. Fertilization and soil amendments caused shifts in microbial communities towards specialized degraders and revealed the introduction of specific microorganisms from amendments. Traditional homemade plant protection products did not cause any disturbance to either of soil bacteria or fungi. The soil alteration index based on enzyme activity successfully differentiated the alteration status for the first time in SSA. These findings could be useful for farmers to integrate AIVs with correct sustainable practices for a sustainable future.

17.
Biology (Basel) ; 10(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401423

RESUMO

Combining no-till and cover crops (NT + CC) as an alternative to conventional tillage (CT) is generating interest to build-up farming systems' resilience while promoting climate change adaptation in agriculture. Our field study aimed to assess the impact of long-term NT + CC management and short-term water stress on soil microbial communities, enzymatic activities, and the distribution of C and N within soil aggregates. High-throughput sequencing (HTS) revealed the positive impact of NT + CC on microbial biodiversity, especially under water stress conditions, with the presence of important rhizobacteria (e.g., Bradyrhizobium spp.). An alteration index based on soil enzymes confirmed soil depletion under CT. C and N pools within aggregates showed an enrichment under NT + CC mostly due to C and N-rich large macroaggregates (LM), accounting for 44% and 33% of the total soil C and N. Within LM, C and N pools were associated to microaggregates within macroaggregates (mM), which are beneficial for long-term C and N stabilization in soils. Water stress had detrimental effects on aggregate formation and limited C and N inclusion within aggregates. The microbiological and physicochemical parameters correlation supported the hypothesis that long-term NT + CC is a promising alternative to CT, due to the contribution to soil C and N stabilization while enhancing the biodiversity and enzymes.

18.
Plants (Basel) ; 9(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466288

RESUMO

Plant growth promoting rhizobacteria provide an innovative solution to address challenges in sustainable agro-ecosystems, improving plant growth as well as acting as agents of biocontrol. In this study autochthonous bacteria were isolated from the rhizosphere of processing tomato plants (Solanum lycopersicum L.) cultivated with conservation agriculture practices (i.e., reduced tillage and cover crops), and evaluated for both growth-promoting activities (PGPAs), and antagonistic potential against the phytopathogenic pest Sclerotinia sclerotiorum. Considering the several activities of PGPR, we decided to structure the screening with a hierarchic approach, starting from testing the capability of fixing nitrogen. The obtained bacteria were processed through the molecular typing technique rep-PCR (Repetitive Extragenic Palindromic) in order to discriminate microbial strains with the same profiles, and identified via 16S rDNA sequencing. Thirty-eight selected isolates were screened in vitro for different activities related to plant nutrition and plant growth regulation as well as for antifungal traits. Isolated bacteria were found to exhibit different efficiencies in indoleacetic acid production and siderophore production, phosphate solubilization and biocontrol activity against the widespread soil-borne plant pathogen S. sclerotiorum. All the 38 bacterial isolates showed at least one property tested. With a view to detect the suitable candidates to be developed as biofertilizers, the selected isolates were ranked by their potential ability to function as PGPR. Thus, consortium of native PGPR bacteria inoculants may represent a suitable solution to address the challenges in sustainable agriculture, to ensure crop yield and quality, lowering the application of chemicals input.

19.
Plants (Basel) ; 9(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31905903

RESUMO

Nowadays, agriculture is facing the great challenge of climate change which puts the productivity of the crops in peril due to unpredictable rain patterns and water shortages, especially in the developing world. Besides productivity, nutritional values of the yields of these crops may also be affected, especially under low mechanization and the low water availability conditions of the developing world. Conservation agriculture (CA) is a topic of emerging interest due to the provision of adequate yields and reduced environmental impact, such as greenhouse gas emissions, by being based on three main principles: minimum soil disturbance (reduced or no tillage), cover crop maintenance, and crop rotation. The aim of this study was to assess the impact of CA management on the growth performance and the nutritional profile of cowpea (Vigna unguiculata L. Walp), a pulse of African origin, commonly known as black eye bean under field conditions. A field experiment was designed to assess the effect of conventional tillage (CT) and no-tillage (NT) combined with the usage of a set of cover crops, coupled to normal and deficient water regimes. Cowpea was revealed to be able to grow and yield comparably at each level of the treatment tested, with a better ability to face water exhaustion under CA management. After a faster initial growth phase in CT plots, the level of adaptability of this legume to NT was such that growth performances improved significantly with respect to CT plots. The flowering rate was higher and earlier in CT conditions, while in NT it was slower but longer-lasting. The leafy photosynthetic rate and the nutritional profile of beans were slightly influenced by tillage management: only total starch content was negatively affected in NT and watered plots while proteins and aminoacids did not show any significant variation. Furthermore, significantly higher carbon and nitrogen concentration occurred in NT soils especially at the topmost (0-5 cm) soil horizon. These findings confirm the capability of CA to enrich soil superficial horizons and highlight that cowpea is a suitable crop to be grown under sustainable CA management. This practice could be pivotal to preserve soils and to save agronomical costs without losing a panel of nutrients that are important to the human diet. Due to its great protein and aminoacidic composition, V. unguiculata is a good candidate for further cultivation in regions of the word facing deficiencies in the intake of such nutrients, such as the Mediterranean basins and Sub-Saharan countries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA