RESUMO
We proved the ability of Fourier Transform Infrared microspectroscopy (microFTIR) complemented by Principal Component Analysis (PCA) to detect protein phosphorylation/de-phosphorylation in mammalian cells. We analyzed by microFTIR human polymorphonuclear neutrophil (PMNs) leukocytes, mouse-derived parental Ba/F3 cells (Ba/F3#PAR), Ba/F3 cells transfected with p210(BCR/ABL) (Ba/F3#WT) and expressing high levels of protein tyrosine kinase (PTK), and human-derived BCR/ABL positive K562 leukemic cell sub-clones engineered to differently express receptor-type tyrosine-protein phosphatase gamma (PTPRG). Synchrotron radiation (SR) and conventional (globar) IR sources were used to perform microFTIR respectively, on single cells and over several cells within the same sample. Ex vivo time-course experiments were run, inducing maximal protein phosphorylation in PMNs by 100 nM N-formylated tripeptide fMLP. Within the specific IR fingerprint 1800-850 cm(-1) frequency domain, PCA identified two regions with maximal signal variance. These were used to model and test the robustness of PCA in representing the dynamics of protein phosphorylation/de-phosphorylation processes. An IR signal ratio marker reflecting the homeostatic control by protein kinases and phosphatases was identified in normal leukocytes. The models identified by microFTIR and PCA in normal leukocytes also distinguished BCR/ABL positive Ba/F3#WT from BCR/ABL negative Ba/F3#PAR cells as well as K562 cells exposed to functionally active protein tyrosine phosphatase recombinant protein ICD-Tat transduced in cells by HIV-1 Tat technology or cells treated with the PTK inhibitor imatinib mesylate (IMA) from cells exposed to phosphatase inactive (D1028A)ICD-Tat recombinant protein and untreated control cells, respectively. The IR signal marker correctly reflected the degrees of protein phosphorylation associated with abnormal PTK activity in BCR/ABL positive leukemic cells and in general was inversely related to the expression/activity of PTPRG in leukemic sub-clones. In conclusion, we have described a new, reliable and simple spectroscopic method to study the ex vivo protein phosphorylation/de-phosphorylation balance in cell models: it is suitable for biomedical and pharmacological research labs but it also needs further optimization and its evaluation on large cohorts of patients to be proposed in the clinical setting of leukemia.
Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucócitos/química , Análise de Componente Principal/métodos , Espectrofotometria Infravermelho/métodos , Animais , Humanos , Células K562 , Camundongos , Estatística como Assunto/métodosRESUMO
The puberty- and fertility-regulating neuropeptide kisspeptin (KISS1) exerts dramatic effects on the physiology of adult gonadotrophin-releasing hormone (GnRH) neurones as a master regulator of mammalian reproduction. Given the action of KISS1 directly on adult GnRH neurones, and that KISS1 activates a signal transduction cascade involved in neurite growth in other neurones, we investigated whether KISS1 may play a role in the normal growth of GnRH neurites to the median eminence. A reverse transcription-polymerase chain reaction demonstrated the expression of Kiss1 mRNA in the embryonic mediobasal hypothalamus, the target region for GnRH neurite termination, as early as embryonic day 13.5 (E13.5), a time when the first GnRH neurites are arriving. Complementary expression of the mRNA encoding the KISS1 receptor, Kiss1r, in the preoptic area (POA) at E13.5 was also observed, suggesting that POA-resident GnRH neurones can respond to KISS1 from an early age. To examine the effects of KISS1 on GnRH neurite growth in isolation, E15.5 POA explants, containing GnRH neurones actively extending neurites, were grown in three-dimensional collagen gels. In the presence of KISS1 (1 µm), both the number and length of GnRH neurites were increased significantly compared to controls without KISS1. The effects of KISS1 on GnRH neurite growth could be inhibited by pretreatment with the phospholipase C inhibitor U73122 (50 µm), indicating that embryonic and adult GnRH neurones respond to KISS1 with the same intracellular signalling pathway. KISS1 provided in a concentration gradient from a fixed source had no effect on GnRH neurite growth, indicating that KISS1 does not function as a long-range chemoattractant. Taken together, these results identify KISS1 as a stimulator of GnRH neurite growth, and suggest that it influences GnRH neurites at close-range to innervate the median eminence. These data add a novel developmental role to the repertoire of the functions of KISS1 in mammalian reproduction.
Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Eminência Mediana/citologia , Neuritos/fisiologia , Proteínas Supressoras de Tumor/farmacologia , Animais , Colágeno/metabolismo , Relação Dose-Resposta a Droga , Embrião de Mamíferos/anatomia & histologia , Feminino , Humanos , Kisspeptinas , Eminência Mediana/fisiologia , Camundongos , Camundongos Transgênicos , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Gravidez , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Transdução de Sinais/fisiologia , Técnicas de Cultura de Tecidos , Proteínas Supressoras de Tumor/genética , Fosfolipases Tipo C/antagonistas & inibidoresRESUMO
In this study, we investigated whether the potential positive effects of nicotine in Alzheimer's disease (AD) may involve neurotrophic factors, such as nerve growth factor (NGF), closely associated with basal forebrain (BF) cholinergic function and survival. To this aim, we studied the effects of prolonged nicotine treatment on neurotrophin receptors expression and on NGF protein levels in the rat BF cholinergic circuitry. Both in vivo and in vitro experiments were conducted. We found that s.c. nicotine infusion (1.2 mg free base/kg/d delivered by mini-pumps for 7 days) induced in vivo an increase in tyrosine kinase receptor A (TrkA)-but not TrkB, TrkC or low affinity neurotrophin receptor p75 (p75)-expression in BF cholinergic neurons targeting the cerebral cortex. Nicotine did not produce statistically significant long-lasting effects on NGF levels in the cerebral cortex, or in the BF. In vitro experiments performed on primary BF neuronal cultures, showed that 72 h exposure to nicotine increased both TrkA expression, and NGF release in culture medium. Neutralization experiments with an anti-NGF antibody showed that NGF presence was not necessary for nicotine-induced increase of TrkA levels in cultured cholinergic neurons, suggesting that nicotine may act through NGF-independent mechanisms. This study shows that nicotine, independently of its action on NGF levels, may contribute to the restoration of the trophic support to BF cholinergic neurons by increasing TrkA levels.