Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Schizophrenia (Heidelb) ; 10(1): 38, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503766

RESUMO

Schizophrenia is characterized by the misattribution of emotional significance to neutral faces, accompanied by overactivations of the limbic system. To understand the disorder's genetic and environmental contributors, investigating healthy first-degree relatives is crucial. However, inconsistent findings exist regarding their ability to recognize neutral faces, with limited research exploring the cerebral correlates of neutral face processing in this population. Thus, we here investigated brain responses to neutral face processing in healthy first-degree relatives through an image-based meta-analysis of functional magnetic resonance imaging studies. We included unthresholded group-level T-maps from 5 studies comprising a total of 120 first-degree relatives and 150 healthy controls. In sensitivity analyses, we ran a combined image- and coordinate-based meta-analysis including 7 studies (157 first-degree relatives, 207 healthy controls) aiming at testing the robustness of the results in a larger sample of studies. Our findings revealed a pattern of decreased brain responses to neutral faces in relatives compared with healthy controls, particularly in limbic areas such as the bilateral amygdala, hippocampus, and insula. The same pattern was observed in sensitivity analyses. These results contrast with the overactivations observed in patients, potentially suggesting that this trait could serve as a protective factor in healthy relatives. However, further research is necessary to test this hypothesis.

2.
Transl Psychiatry ; 13(1): 386, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092734

RESUMO

Besides playing a central role in neuroinflammation, microglia regulate synaptic development and is involved in plasticity. Converging lines of evidence suggest that these different processes play a critical role in schizophrenia. Furthermore, previous studies reported altered transcription of microglia genes in schizophrenia, while microglia itself seems to be involved in the etiopathology of the disease. However, the regional specificity of these brain transcriptional abnormalities remains unclear. Moreover, it is unknown whether brain and peripheral expression of microglia genes are related. Thus, we investigated the expression of a pre-registered list of 10 genes from a core signature of human microglia both at brain and peripheral levels. We included 9 independent Gene Expression Omnibus datasets (764 samples obtained from 266 individuals with schizophrenia and 237 healthy controls) from 8 different brain regions and 3 peripheral tissues. We report evidence of a widespread transcriptional alteration of microglia genes both in brain tissues (we observed a decreased expression in the cerebellum, associative striatum, hippocampus, and parietal cortex of individuals with schizophrenia compared with healthy controls) and whole blood (characterized by a mixed altered expression pattern). Our results suggest that brain underexpression of microglia genes may represent a candidate transcriptional signature for schizophrenia. Moreover, the dual brain-whole blood transcriptional alterations of microglia/macrophage genes identified support the model of schizophrenia as a whole-body disorder and lend weight to the use of blood samples as a potential source of biological peripheral biomarkers.


Assuntos
Microglia , Esquizofrenia , Humanos , Microglia/metabolismo , Esquizofrenia/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Biomarcadores/metabolismo
3.
Biol Psychiatry ; 93(2): 167-177, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36085080

RESUMO

BACKGROUND: Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS: Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS: In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS: These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Endofenótipos , Teorema de Bayes , Emoções/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Mapeamento Encefálico , Expressão Facial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA