Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258508

RESUMO

Increasing global palm oil production yields a valuable palm fatty acid distillate (PFAD) - a rich vitamin E (Vit-E) source and multifunctional ingredient in the food agro-industry - that can be utilized to achieve sustainability. This article reviews trends in the use and role of PFAD and its Vit-E in the food sector and proposes an integrated agro-industrial concept toward sustainability. Vit-E can be separated from PFAD with diverse and impactful pharmaceutical activities, including antioxidant, anti-inflammatory, anticancer and anti-ultraviolet effects. Based on in vivo experimental tests, PFAD and Vit-E supplementation can enhance the productivity and quality of livestock-based food products. PFAD is a plasticizer and antistatic packaging material in food packaging systems, and its derivatives can be used as food additives. Meanwhile, the Vit-E molecule in packaging can extend food shelf life by maintaining color stability, reducing lipid oxidation and rancidity, adding antimicrobial properties, and influencing changes in packaging properties such as water vapor, tensile strength, melting point and other physical properties. Toward sustainability, an integrated agro-industrial design has been proposed to implement clean production, increase the added value of palm oil industry residues, minimize environmental risks and increase profits to achieve long-term social welfare. In conclusion, PFAD residues and their Vit-E content have shown broad benefits in the food sector and prospects toward sustainability. © 2024 Society of Chemical Industry.

2.
Int J Food Microbiol ; 425: 110866, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39146626

RESUMO

Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.


Assuntos
Bactérias , Biofilmes , Curcumina , Microbiologia de Alimentos , Conservação de Alimentos , Fungos , Fármacos Fotossensibilizantes , Curcumina/farmacologia , Biofilmes/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Bactérias/efeitos da radiação , Bactérias/metabolismo , Conservação de Alimentos/métodos , Fungos/efeitos dos fármacos , Armazenamento de Alimentos , Espécies Reativas de Oxigênio/metabolismo , Contaminação de Alimentos/prevenção & controle
3.
3D Print Addit Manuf ; 10(5): 1015-1035, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886399

RESUMO

Wounds are skin tissue damage due to trauma. Many factors inhibit the wound healing phase (hemostasis, inflammation, proliferation, and alteration), such as oxygenation, contamination/infection, age, effects of injury, sex hormones, stress, diabetes, obesity, drugs, alcoholism, smoking, nutrition, hemostasis, debridement, and closing time. Cellulose is the most abundant biopolymer in nature which is promising as the main matrix of wound dressings because of its good structure and mechanical stability, moisturizes the area around the wound, absorbs excess exudate, can form elastic gels with the characteristics of bio-responsiveness, biocompatibility, low toxicity, biodegradability, and structural similarity with the extracellular matrix (ECM). The addition of active ingredients as a model drug helps accelerate wound healing through antimicrobial and antioxidant mechanisms. Three-dimensional (3D) bioprinting technology can print cellulose as a bioink to produce wound dressings with complex structures mimicking ECM. The 3D printed cellulose-based wound dressings are a promising application in modern wound care. This article reviews the use of 3D printed cellulose as an ideal wound dressing and their properties, including mechanical properties, permeability aspect, absorption ability, ability to retain and provide moisture, biodegradation, antimicrobial property, and biocompatibility. The applications of 3D printed cellulose in the management of chronic wounds, burns, and painful wounds are also discussed.

4.
Int J Biol Macromol ; 240: 124327, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37015281

RESUMO

Agricultural biomass waste such as corn cob is available in large quantities and can be used as renewable materials for various applications. Corn cob was converted into nanocrystalline cellulose by using mild sulfuric acid concentrations (30 % w/v) at low temperature (50 °C) and a relatively shorter time extraction (30 min) combined with mechanical treatment using a conventional high-speed blender. NCC from cellulose and α-cellulose from corn cobs have been successfully isolated with relatively high yields and crystallinities of 50.07-65.33 % and 65.5-69.9 %, respectively. Scanning electron microscopy (SEM) evaluated the morphological variation and dimension from corn cob fiber (CF), delignification fiber (DF), cellulose, and α-cellulose, which shows that each pretreatment stage causes a decrease in fiber diameter from 16.56 to 5.48 µm. Transmission electron microscopy (TEM) images confirmed the nano-scale dimension with fiber diameters ranging between 9.35 nm and 6.51 nm. Thermogravimetric analysis shows that NCC has relatively high thermal stability ranging from 429 to 437 °C. Thus, this characteristic of NCC has the potential to be applied as a reinforcing agent in various fields of polymer composites. Finally, this study presents a method for isolating NCC from corncob waste using a conventional high-speed blender in a mild condition process with a relatively low cost, environmentally friendly pathway, and high yield that was still preserved.


Assuntos
Celulose , Zea mays , Celulose/química , Zea mays/química , Microscopia Eletrônica de Transmissão , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA