Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387600

RESUMO

The Death-associated protein kinase 1 (DAPK1) has emerged as a crucial player in the pathogenesis of degenerative diseases. As a serine/threonine kinase family member, DAPK1 regulates critical signaling pathways, such as apoptosis and autophagy. In this study, we comprehensively analyzed DAPK1 interactors and enriched molecular functions, biological processes, phenotypic expression, disease associations, and aging signatures to elucidate the molecular networks of DAPK1. Furthermore, we employed a structure-based virtual screening approach using the PubChem database, which enabled the identification of potential bioactive compounds capable of inhibiting DAPK1, including caspase inhibitors and synthetic analogs. Three selected compounds, CID24602687, CID8843795, and CID110869998, exhibited high docking affinity and selectivity towards DAPK1, which were further investigated using molecular dynamics simulations to understand their binding patterns. Our findings establish a connection between DAPK1 and retinal degenerative diseases and highlight the potential of these selected compounds for the development of novel therapeutic strategies. This study provides valuable insights into the molecular mechanisms underlying DAPK1-related diseases, and offers new opportunities for the discovery of effective treatments for retinal degeneration.Communicated by Ramaswamy H. Sarma.

2.
Life Sci ; 317: 121452, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720454

RESUMO

AIM: This study aims to identify endoplasmic reticulum stress response elements (ERSE) in the human genome to explore potentially regulated genes, including kinases and transcription factors, involved in the endoplasmic reticulum (ER) stress and its related diseases. MATERIALS AND METHODS: Python-based whole genome screening of ERSE was performed using the Amazon Web Services elastic computing system. The Kinome database was used to filter out the kinases from the extracted list of ERSE-related genes. Additionally, network analysis and genome enrichment were achieved using NDEx, the Network and Data Exchange software, and web-based computational tools. To validate the gene expression, quantitative RT-PCR was performed for selected kinases from the list by exposing the HeLa cells to tunicamycin and brefeldin, ER stress inducers, for various time points. KEY FINDINGS: The overall number of ERSE-associated genes follows a similar pattern in humans, mice, and rats, demonstrating the ERSE's conservation in mammals. A total of 2705 ERSE sequences were discovered in the human genome (GRCh38.p14), from which we identified 36 kinases encoding genes. Gene expression analysis has shown a significant change in the expression of selected genes under ER stress conditions in HeLa cells, supporting our finding. SIGNIFICANCE: In this study, we have introduced a rapid method using Amazon cloud-based services for genome-wide screening of ERSE sequences from both positive and negative strands, which covers the entire genome reference sequences. Approximately 10 % of human protein-protein interactomes were found to be associated with ERSE-related genes. Our study also provides a rich resource of human ER stress-response-based protein networks and transcription factor interactions and a reference point for future research aiming at targeted therapeutics.


Assuntos
Proteínas de Ligação a DNA , Retículo Endoplasmático , Animais , Humanos , Camundongos , Ratos , Sequência de Bases , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Células HeLa , Mamíferos/metabolismo , Fatores de Transcrição/metabolismo , Fosfotransferases
3.
Curr Opin Pharmacol ; 64: 102231, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544976

RESUMO

Coronavirus disease (COVID-19) outbreak has caused unprecedented global disruption since 2020. Approximately 238 million people are affected worldwide where the elderly succumb to mortality. Post-COVID syndrome and its side effects have popped up with several health hazards, such as macular degeneration and vision loss. It thus necessitates better medical care and management of our dietary practices. Natural flavonoids have been included in traditional medicine and have also been used safely against COVID-19 and several other diseases. Kaempferol is an essential flavonoid that has been demonstrated to influence several vital cellular signaling pathways involved in apoptosis, angiogenesis, inflammation, and autophagy. In this review, we emphasize the plausible regulatory effects of Kaempferol on hallmarks of COVID-19 and macular degeneration.


Assuntos
Tratamento Farmacológico da COVID-19 , Degeneração Macular , Doenças Retinianas , Idoso , Flavonoides/uso terapêutico , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Retina/metabolismo , Doenças Retinianas/tratamento farmacológico
4.
Invest Ophthalmol Vis Sci ; 61(2): 4, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32031576

RESUMO

Purpose: Oxidative stress affects the retinal pigment epithelium (RPE) leading to development of vascular eye diseases. Cholecalciferol (VIT-D) is a known modulator of oxidative stress and angiogenesis. This in vitro study was carried out to evaluate the protective role of VIT-D on RPE cells incubated under hyperoxic conditions. Methods: Cadaver primary RPE (PRPE) cells were cultured in hyperoxia (40% O2) with or without VIT-D (α-1, 25(OH) 2D3). The functional and physiological effects of PRPE cells with VIT-D treatment were analyzed using molecular and biochemical tools. Results: Vascular signaling modulators, such as vascular endothelial growth factor (VEGF) and Notch, were reduced in hyperoxic conditions but significantly upregulated in the presence of VIT-D. Additionally, PRPE conditioned medium with VIT-D induced the tubulogenesis in primary human umbilical vein endothelial cells (HUVEC) cells. VIT-D supplementation restored phagocytosis and transmembrane potential in PRPE cells cultured under hyperoxia. Conclusions: VIT-D protects RPE cells and promotes angiogenesis under hyperoxic insult. These findings may give impetus to the potential of VIT-D as a therapeutic agent in hyperoxia induced retinal vascular diseases.


Assuntos
Colecalciferol/farmacologia , Hiperóxia/fisiopatologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Vitaminas/farmacologia , Adolescente , Adulto , Cadáver , Células Cultivadas , Criança , Pré-Escolar , Células Endoteliais da Veia Umbilical Humana , Humanos , Potenciais da Membrana/fisiologia , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Receptores Notch/metabolismo , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA