Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 161(3)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39017428

RESUMO

We report the x-ray absorption spectrum (XAS) of the tert-butyl radical, C4H9. The radical was generated pyrolytically from azo-tert-butane, and the XAS of the pure radical was obtained by subtraction of spectra recorded at different temperatures. The bands in the XAS were assigned by ab initio calculations that are in very good agreement with the experimental data. The lowest energy signal in the XAS is assigned to the C1s electron transition from the central carbon atom to the singly occupied molecular orbital (SOMO), while higher transitions correspond to C1s excitations from terminal carbon atoms. Furthermore, we investigated the fragmentation of the radical following resonant C1s excitation by electron-ion-coincidence spectroscopy. Several fragmentation channels were identified. The C1s excitation of the terminal carbons is associated with a stronger fragmentation tendency compared to the lowest C1s excitation of the central carbon into the SOMO. For this core excited state, we still observe an intact parent ion, C4H9+, and a comparatively higher tendency to dissociate into CH3+ + C3H6+.

2.
Phys Chem Chem Phys ; 26(24): 17042-17047, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38836386

RESUMO

We report the photoelectron spectrum of the pyridyl radical (C5H4N), a species of interest in astrochemistry and combustion. The radicals were produced via hydrogen abstraction in a fluorine discharge and ionized with synchrotron radiation. Mass-selected slow photoelectron spectra of the products were obtained from photoelectron-photoion coincidence spectra. A Franck-Condon simulation based on computed geometries and vibrational frequencies identified contributions of the o- and p-pyridyl radicals. For the o-isomer an adiabatic ionisation energy of 7.70 eV was obtained, in excellent agreement with a computed value of 7.72 eV. The spectrum of o-pyridyl is characterized by a long progression in an in-plane bending mode and the N-C stretch that contains the radical site.

3.
Opt Lett ; 49(9): 2285-2288, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691700

RESUMO

We present experiments on reservoir computing (RC) using a network of vertical-cavity surface-emitting lasers (VCSELs) that we diffractively couple via an external cavity. Our optical reservoir computer consists of 24 physical VCSEL nodes. We evaluate the system's memory and solve the 2-bit XOR task and the 3-bit header recognition (HR) task with bit error ratios (BERs) below 1% and the 2-bit digital-to-analog conversion (DAC) task with a root mean square error (RMSE) of 0.067.

4.
Phys Chem Chem Phys ; 26(9): 7363-7370, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38375909

RESUMO

Substituting CC with the isoelectronic BN units is a promising approach to modify the optoelectronic properties of polycyclic aromatic hydrocarbons. While computational studies have already addressed trends in the electronic structure of the various isosteres, experimental data are still scarce. Here, the excited state spectroscopy and dynamics of 4a,8a-azaboranaphthalene were studied by picosecond time-resolved photoionization in a supersonic jet and analyzed with the aid of XMS-CASPT2 and time-dependent DFT calculations. A resonance-enhanced multiphoton ionization spectrum (REMPI) reveals the S1 origin at  = 33 830 ± 12 cm-1. Several vibrational bands were resolved and assigned by comparison with the computations. A [1+1] photoelectron spectrum via the S1 origin yielded an adiabatic ionization energy of 8.27 eV. Selected vibrational bands were subsequently investigated by pump-probe photoionization. While the origin as well as several low-lying vibronic states exhibit lifetimes in the ns-range, a monoexponential decay is observed at higher excitation energies, ranging from 400 ps at +1710 cm-1 to 13 ps at +3360 cm-1. The deactivation is attributed to an internal conversion of the optically excited S1 state via a barrier that gives access to a conical intersection (CI) to the S0 state. The doping significantly changes the energetic ordering of CIs and lowers the corresponding energy barrier for the associated deactivation pathway, as revealed by nudged elastic band (NEB) calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA