Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 1281, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097720

RESUMO

Serial X-ray crystallography allows macromolecular structure determination at both X-ray free electron lasers (XFELs) and, more recently, synchrotron sources. The time resolution for serial synchrotron crystallography experiments has been limited to millisecond timescales with monochromatic beams. The polychromatic, "pink", beam provides a more than two orders of magnitude increased photon flux and hence allows accessing much shorter timescales in diffraction experiments at synchrotron sources. Here we report the structure determination of two different protein samples by merging pink-beam diffraction patterns from many crystals, each collected with a single 100 ps X-ray pulse exposure per crystal using a setup optimized for very low scattering background. In contrast to experiments with monochromatic radiation, data from only 50 crystals were required to obtain complete datasets. The high quality of the diffraction data highlights the potential of this method for studying irreversible reactions at sub-microsecond timescales using high-brightness X-ray facilities.


Assuntos
Cristalografia por Raios X/métodos , Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/estatística & dados numéricos , Bases de Dados de Compostos Químicos/estatística & dados numéricos , Endopeptidase K/química , Desenho de Equipamento , Modelos Moleculares , Ficocianina/química , Conformação Proteica , Eletricidade Estática , Síncrotrons , Difração de Raios X
2.
J Synchrotron Radiat ; 23(2): 443-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917131

RESUMO

X-ray beam stability is crucial for acquiring high-quality data at synchrotron beamline facilities. When the X-ray beam and defining apertures are of similar dimensions, small misalignments driven by position instabilities give rise to large intensity fluctuations. This problem is solved using extremum seeking feedback control (ESFC) for in situ vertical beam position stabilization. In this setup, the intensity spatial gradient required for ESFC is determined by phase comparison of intensity oscillations downstream from the sample with pre-existing vertical beam oscillations. This approach compensates for vertical position drift from all sources with position recovery times <6 s and intensity stability through a 5 µm aperture measured at 1.5% FWHM over a period of 8 hours.


Assuntos
Síncrotrons , Raios X
3.
Biophys J ; 102(4): 927-33, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22385864

RESUMO

Proteins are dynamic molecules whose function in virtually all biological processes requires conformational motion. Direct experimental probes of protein structure in solution are needed to characterize these motions. Anomalous scattering from proteins in solution has the potential to act as a precise molecular ruler to determine the positions of specific chemical groups or atoms within proteins under conditions in which structural changes can take place free from the constraints of crystal contacts. In solution, anomalous diffraction has two components: a set of cross-terms that depend on the relative location of the anomalous centers and the rest of the protein, and a set of pure anomalous terms that depend on the distances between the anomalous centers. The cross-terms are demonstrated here to be observable and to provide direct information about the distance between the anomalous center and the center of mass of the protein. The second set of terms appears immeasurably small in the context of current experimental capabilities. Here, we outline the theory underlying anomalous scattering from proteins in solution, predict the anomalous differences expected on the basis of atomic coordinate sets, and demonstrate the measurement of anomalous differences at the iron edge for solutions of myoglobin and hemoglobin.


Assuntos
Hemoglobina A/química , Mioglobina/química , Difração de Raios X/métodos , Animais , Humanos , Soluções
4.
J Mol Biol ; 408(5): 909-21, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21420976

RESUMO

Specific ligation states of hemoglobin are, when crystallized, capable of taking on multiple quaternary structures. The relationship between these structures, captured in crystal lattices, and hemoglobin structure in solution remains uncertain. Wide-angle X-ray solution scattering (WAXS) is a sensitive probe of protein structure in solution that can distinguish among similar structures and has the potential to contribute to these issues. We used WAXS to assess the relationships among the structures of human and bovine hemoglobins in different liganded forms in solution. WAXS data readily distinguished among the various forms of hemoglobins. WAXS patterns confirm some of the relationships among hemoglobin structures that have been defined through crystallography and NMR and extend others. For instance, methemoglobin A in solution is, as expected, nearly indistinguishable from HbCO A. Interestingly, for bovine hemoglobin, the differences between deoxy-Hb, methemoglobin and HbCO are smaller than the corresponding differences in human hemoglobin. WAXS data were also used to assess the spatial extent of structural fluctuations of various hemoglobins in solution. Dynamics has been implicated in allosteric control of hemoglobin, and increased dynamics has been associated with lowered oxygen affinity. Consistent with that notion, WAXS patterns indicate that deoxy-Hb A exhibits substantially larger structural fluctuations than HbCO A. Comparisons between the observed WAXS patterns and those predicted on the basis of atomic coordinate sets suggest that the structures of Hb in different liganded forms exhibit clear differences from known crystal structures.


Assuntos
Carboxihemoglobina/química , Metemoglobina/química , Espalhamento a Baixo Ângulo , Regulação Alostérica , Animais , Bovinos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Soluções , Difração de Raios X
5.
Chem Biol ; 11(10): 1431-43, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15489170

RESUMO

A chemical genetics approach to functional analysis of gene products utilizes high-throughput target-based screens of compound libraries to identify ligands that modulate the activity of proteins of interest. Candidates are further screened using functional assays designed specifically for the protein--and function--of interest, suffering from the need to customize the assay to each protein. An alternative strategy is to utilize a probe to detect the structural changes that usually accompany binding of a functional ligand. Wide-angle X-ray scattering from proteins provides a means to identify a broad range of ligand-induced changes in secondary, tertiary, and quaternary structure. The speed and accuracy of data acquisition, combined with the label-free targets and binding conditions achievable, indicate that WAXS is well suited as a moderate-throughput assay in the detection and analysis of protein-ligand interactions.


Assuntos
Conformação Proteica , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X/métodos , Ligantes , Proteínas Ligantes de Maltose , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Soluções , Transferrina/química , Transferrina/metabolismo , Raios X
6.
Structure ; 9(11): 1061-9, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11709170

RESUMO

BACKGROUND: The proteins belonging to the collagen family are ubiquitous throughout the animal kingdom. The most abundant collagen, type I, readily forms fibrils that convey the principal mechanical support and structural organization in the extracellular matrix of connective tissues such as bone, skin, tendon, and vasculature. An understanding of the molecular arrangement of collagen in fibrils is essential since it relates molecular interactions to the mechanical strength of fibrous tissues and may reveal the underlying molecular pathology of numerous connective tissue diseases. RESULTS: Using synchrotron radiation, we have conducted a study of the native fibril structure at anisotropic resolution (5.4 A axial and 10 A lateral). The intensities of the tendon X-ray diffraction pattern that arise from the lateral packing (three-dimensional arrangement) of collagen molecules were measured by using a method analogous to Rietveld methods in powder crystallography and to the separation of closely spaced peaks in Laue diffraction patterns. These were then used to determine the packing structure of collagen by MIR. CONCLUSIONS: Our electron density map is the first obtained from a natural fiber using these techniques (more commonly applied to single crystal crystallography). It reveals the three-dimensional molecular packing arrangement of type I collagen and conclusively proves that the molecules are arranged on a quasihexagonal lattice. The molecular segments that contain the telopeptides (central to the function of collagen fibrils in health and disease) have been identified, revealing that they form a corrugated arrangement of crosslinked molecules that strengthen and stabilize the native fibril.


Assuntos
Colágeno Tipo I/química , Tendões/química , Simulação por Computador , Cristalografia por Raios X/métodos , Modelos Moleculares , Propriedades de Superfície , Síncrotrons
7.
Biochemistry ; 35(28): 9014-23, 1996 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-8703904

RESUMO

X-ray methods based on synchrotron technology have the promise of providing time-resolved structural data based on the high flux and brightness of the X-ray beams. One of the most closely examined problems in this area of time-resolved structure determination has been the examination of intermediates in ligand binding to myoglobin. Recent crystallographic experiments using synchrotron radiation have identified the protein tertiary and heme structural changes that occur upon photolysis of the myoglobin--carbon monoxide complex at cryogenic temperatures [Schlichting, I., Berendzen, J., Phillips, G., & Sweet, R. (1994) Nature 371, 808--812]. However, the precision of protein crystallographic data (approximately 0.2 A) is insufficient to provide precise metrical details of the iron--ligand bond lengths. Since bond length changes on this scale can trigger reactivity changes of several orders of magnitude, such detail is critical to a full understanding of metalloprotein structure--function relationships. Extended X-ray absorption fine structure (EXAFS) spectroscopy has the potential for analyzing bond distances to a precision of 0.02 A but is hampered by its relative insensitivity to the geometry of the backscattering atoms. Thus, it is often unable to provide a unique solution to the structure without ancillary structural information. We have developed a suite of computer programs that incorporate this ancillary structural information and compute the expected experimental spectra for a wide ranging series of Cartesian coordinate sets (global mapping). The programs systematically increment the distance of the metal to various coordinating ligands (along with their associated higher shells). Then, utilizing the ab initio EXAFS code FEFF 6.01, simulated spectra are generated and compared to the actual experimental spectra, and the differences are computed. Finally, the results for hundreds of simulations can be displayed (and compared) in a single plot. The power of this approach is demonstrated in the examination of high signal to noise EXAFS data from a photolyzed solution sample of the myoglobin--carbon monoxide complex at 10 K. Evaluation of these data using our global mapping procedures placed the iron to pyrrole nitrogen average distances close to the value for deoxymyoglobin (2.05 +/- 0.01 A), while the distance from iron to the proximal histidine nitrogen is seen to be 2.20 +/- 0.04 A. It is also shown that one cannot uniquely position the CO ligand on the basis of the EXAFS data alone, as a number of reasonable minima (from the perspective of the EXAFS) are observed. This provides a reasonable explanation for the multiplicity of solutions that have been previously reported. The results presented here are seen to be in complete agreement with the crystallographic results of Schlichting et al. (1994) within the respective errors of the two techniques; however, the extended X-ray absorption fine structure data allow the iron--ligand bond lengths to be precisely defined. An examination of the available spectroscopic data, including EXAFS, shows that the crystallographic results of Schlichting et al. (1994) are highly relevant to the physiological solution state and must be taken into account in any attempt to understand the incomplete relaxation process of the heme iron for the Mb*CO photoproduct at low temperature.


Assuntos
Monóxido de Carbono/química , Músculo Esquelético/química , Mioglobina/química , Animais , Monóxido de Carbono/metabolismo , Simulação por Computador , Cristalografia por Raios X , Heme/metabolismo , Histidina/química , Histidina/metabolismo , Cavalos , Ferro/química , Ferro/metabolismo , Mioglobina/metabolismo , Fotólise , Software , Espectrofotometria , Análise Espectral Raman , Temperatura
8.
Biophys J ; 66(5): 1653-64, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8061214

RESUMO

The design of the time-resolved x-ray diffraction experiments reported in this and an accompanying paper was based on direct measurements of enzyme phosphorylation using [gamma-32P]ATP that were employed to determine the extent to which the lanthanides La3+ and Tb3+ activate phosphorylation of the Ca2+ATPase and their effect on the kinetics of phosphoenzyme formation and decay. We found that, under the conditions of our experiments, the two lanthanides are capable of activating phosphorylation of the ATPase, resulting in substantial levels of phosphoenzyme formation and they slow the formation and dramatically extend the lifetime of the phosphorylated enzyme conformation, as compared with calcium activation. The results from the time-resolved, nonresonance x-ray diffraction work reported in this paper are consistent with the enzyme phosphorylation experiments; they indicate that the changes in the profile structure of the SR membrane induced by terbium-activated phosphorylation of the ATPase enzyme are persistent over the much longer lifetime of the phosphorylated enzyme and are qualitatively similar to the changes induced by calcium-activated phosphorylation, but smaller in magnitude. These results made possible the time-resolved, resonance x-ray diffraction studies reported in an accompanying paper utilizing the resonance x-ray scattering from terbium, replacing calcium, to determine not only the location of high-affinity metal-binding sites in the SR membrane profile, but also the redistribution of metal density among those sites upon phosphorylation of the Ca2+ATPase protein, as facilitated by the greatly extended lifetime of the phosphoenzyme.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Retículo Sarcoplasmático/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/efeitos da radiação , Animais , Fenômenos Biofísicos , Biofísica , ATPases Transportadoras de Cálcio/efeitos da radiação , Elétrons , Técnicas In Vitro , Membranas Intracelulares/química , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/enzimologia , Cinética , Lantânio/farmacologia , Lipídeos de Membrana/química , Modelos Químicos , Estrutura Molecular , Fosforilação , Fotólise , Coelhos , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/efeitos dos fármacos , Térbio/farmacologia , Difração de Raios X
9.
Biophys J ; 66(5): 1665-77, 1994 May.
Artigo em Inglês | MEDLINE | ID: mdl-8061215

RESUMO

Time-resolved, terbium resonance x-ray diffraction experiments have provided the locations of three different high-affinity metal-binding/transport sites on the Ca2+ATPase enzyme in the profile structure of the sarcoplasmic reticulum (SR) membrane. By considering these results in conjunction with the known, moderate-resolution profile structure of the SR membrane (derived from nonresonance x-ray and neutron diffraction studies), it was determined that the three metal-binding sites are located at the "headpiece/stalk" junction in the Ca2+ATPase profile structure, in the "transbilayer" portion of the enzyme profile near the center of the membrane phospholipid bilayer, and at the intravesicular surface of the membrane profile. All three metal-binding sites so identified are simultaneously occupied in the unphosphorylated enzyme conformation. Phosphorylation of the ATPase causes a redistribution of metal density among the sites, resulting in a net movement of metal density toward the intravesicular side of the membrane, i.e., in the direction of calcium active transport. We propose that this redistribution of metal density is caused by changes in the relative binding affinities of the three sites, mediated by local structural changes at the sites resulting from the large-scale (i.e., long-range) changes in the profile structure of the Ca2+ATPase induced by phosphorylation, as reported in an accompanying paper. The implications of these results for the mechanism of calcium active transport by the SR Ca2+ATPase are discussed briefly.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Metais/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Sítios de Ligação , Fenômenos Biofísicos , Biofísica , ATPases Transportadoras de Cálcio/química , Elétrons , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Transporte de Íons , Lantânio/metabolismo , Modelos Químicos , Fosforilação , Conformação Proteica , Coelhos , Térbio/metabolismo , Difração de Raios X
10.
Biophys J ; 56(2): 327-37, 1989 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2550089

RESUMO

We have recently developed x-ray diffraction methods to derive the profile structure of ultrathin lipid multilayer films having one to five bilayers (e.g., Skita, V., W. Richardson, M. Filipkowski, A.F. Garito, and J.K. Blasie. 1987. J. Physique. 47:1849-1855). Furthermore, we have employed these techniques to determine the location of a monolayer of cytochrome c bound to the carboxyl group surface of various ultrathin lipid multilayer substrates via nonresonance x-ray diffraction (Pachence, J.M., and J.K. Blasie. 1987. Biophys. J. 52:735-747). Here an intense tunable source of x-rays (beam line X9-A at the National Synchrotron Light Source at the Brookhaven National Laboratory) was utilized to measure the resonance x-ray diffraction effect from the heme-Fe atoms within the cytochrome c molecular monolayer located on the carboxyl surface of a five monolayer arachidic acid film. Lamellar x-ray diffraction was recorded for energies above, below, and at the Fe K-absorption edge (E = 7,112 eV). An analysis of the resonance x-ray diffraction effect is presented, whereby the location of the heme-Fe atoms within the electron density profile of the cytochrome c/arachidic acid ultrathin multilayer film is indicated to +/- 3 A accuracy.


Assuntos
Grupo dos Citocromos c/metabolismo , Ácidos Eicosanoicos , Bicamadas Lipídicas , Silanos , Silício , Heme/análise , Ferro/análise , Conformação Molecular , Ligação Proteica , Conformação Proteica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA